
Abstract

We have implemented a strong LL(k) parser genera-
tor, TCLLk, with three major innovations: (a) The
parser generator rewrites the grammar to put it in
close to LL(1) form. (b) If look-aheads of more than
one symbol are needed, it builds look-ahead trees out
of LL(1) productions. (c) It uses a novel computation
of FOLLOWk sets.

We compare its performance to LALR(1) for several
grammars and report our experience translating a
Java grammar into a form suitable for TCLLk. The
algorithms in TCLLk appear to offer a significant
improvement over LALR(1).

Keywords: LL(k) parsing

Introduction
LL(k) [Lewis68] [Rosenkrantz70] and LR(k)
[Knuth65] parsers have become dominant for com-
piler construction. Indeed, concerns for the size of the
parsing tables have restricted the choice further to
LL(1) and LALR(1) [DeRemer69] [DeRemer82].
LL(1) is credited with having smaller parsing tables
and better error recovery, whereas LALR(1) accepts a
larger class of grammars and hence does not require
as much expertise on the part of the compiler writer.
Indeed, the difficulty of converting programming lan-
guage grammars to LL(1) form is the biggest argu-
ment against LL(1). Due to its ease of use, LALR(1)
is usually preferred.

We have developed a strong LL(k) parser generator,
TCLLk, that promises to tilt the preference back to LL
parsers. Our parser generator transforms program-

ming language grammars into a form close to LL(1)
by removing left recursion from grammars and factor-
ing. The class of grammars accepted appears to be
about as convenient for compiler writers as that
accepted by LALR(1). Both TCLLk and LALR(1)
can accept grammars the other can’t.

We provide k-symbol look-ahead where needed by
building look-ahead trees. As Parr [Parr93] points out,
k-symbol look-ahead has been rejected for requiring
space exponential in k, but that is based on the
assumption that one must use k-tuples of look-ahead
symbols. In practice, by handling the look-aheads one
symbol at a time, the space required for look-ahead is
quite modest. We differ from Parr in how we compute
and represent the look-aheads, and instead of having
heterogeneous parser states, our parser uses LL(1)
tables.

The size of parse tables are shown to be smaller than
those that would be generated from LALR(1).

Preliminaries
Let T be a set of symbols. T* is the set of all strings
composed of symbols taken from set T, including the
empty string, ε. The length of a string u is written |u|.

A context-free grammar (CFG) is a four-tuple
(N,T,s,P) where N is a set of nonterminal symbols, T
is a set of terminal symbols, s∈Ν is the start symbol,
and P is a set of productions, A→u, where A∈Ν and

u∈ (N∪Τ) ∗ . A→x|y|...|z is short for A→x, A→y, ...,
A→z. The productions represent rewriting rules.
Given a production A→u, the string xAy may be
rewritten xuy, expressed as xAy⇒ xuy. A series of

zero or more rewritings, u⇒*v, is called a derivation.
A derivation of one or more rewritings is denoted

Tools of Computing Technical Report 1999-3-#2-TC, 3/12/1999

A Strong LL(k) Parser Generator That Accepts Non-LL
Grammars and Generates LL(1) Tables

Thomas Christopher
DePaul University, CTI

243 S. Wabash Ave.
Chicago IL 60604

tc@toolsofcomputing.com

2

u⇒+v.

Α context free grammar with action symbols, CFGA,
is a five tuple (N,T, ,s,P) where is a set of action
symbols, N, T, and s are as in CFGs, and P is a set of

productions, A→u, where A∈Ν and u∈ (N∪ ∪Τ) ∗ .
Action symbols are used to interface a parser to the
semantics in a compiler. As terminal symbols are rec-
ognized, they are pushed on a semantics stack. When
the parser encounters an action symbol, it calls an
action routine which removes several values from the
semantics stack and may push a value back on the
stack. The actions symbols are typically placed at the
ends of productions to synthesize the value of the left-
hand-side symbol from the values of the right hand
side symbols. Action symbols are not present in the
input language. One may describe that language with
an underlying CFG: (N∪ ,T,s, P∪ {A→ε | Α∈ }).
That is to say, action symbols behave like nontermi-
nals that derive only the empty string.

The function FIRST(x) = {a | x⇒*av} where the deri-
vation is done in the underlying CFG. The functions

FIRSTk(x) = {u | u∈ T* and either x⇒*u, |u|≤k or

x⇒*uv and |u|=k}. Again, the derivation is done in
the underlying CFG. Note that FIRST(x) includes all
types of symbol, but FIRSTk only includes strings of

terminals. FIRSTk applied to a set of strings is the

union of FIRSTk applied to each string in the set. The
k symbol look-ahead of a production A→u, k-look-

ahead(A→u), is FIRSTk({uy | s⇒*xAy⇒xuy}). A

grammar is strong LL(k) (SLL(k)) if for all produc-
tions A→u and A→v in P,

k-look-ahead(A→u)∩k-look-ahead(A→v)=∅

The LL(1) parsing algorithm is given in Figure 1. It
works by generating a sentence and matching it to the
input as it is generated. The prediction stack, also
known as a parse stack, holds the right part of the sen-
tence being generated. This version of an LL(1) parser
is designed for interactive use; it can perform a series
of actions before reading the next input symbol.

An operation we use extensively in our algorithm is
expanding a nonterminal in a production. Suppose we
have a production A→uBv and the entire set of pro-
ductions for B are B→x1, B→x2, ..., B→xn. To

expand B in the production A→uBv, we replace
A→uBv with productions A→ux1v, A→ux2v, ...,

A→uxnv.

Method
Our algorithm tries to produce LL(1) parsing tables for a
CFGA by first rewriting the grammar in an attempt to
put it in LL(1) form, and then, if the rewriting is not
completely successful, by building look-ahead trees.
More specifically, the parser generator will:

1. Analyze the grammar and stop if it is not reduced.

2. Remove left recursion.

3. Factor.

4. Build look-ahead trees, if necessary.

5. Write out LL(1) parse tables.

Left recursion removal. A production A→Αu is directly
left recursive; nonterminal A can derive itself first in a
string by one rewrite. More generally, a nonterminal A

is left recursive if A⇒+Av in the underlying grammar.
LL parsers cannot be produced for grammars containing
left recursive nonterminals.

The fundamental transformation of left recursion
removal is to remove direct left recursion:

A → A u1 | A u2 | ... | A un | w1 | ... | wm

becomes

A → w1 A' | ... | wm A'

A' → u1 A' | u2 A'| ... | un A' | ε

where A' is a new nonterminal.

A production A→u is indirectly left recursive if it is not
directly left recursive and A∈ FIRST(u). Indirect left
recursion can sometimes be converted into direct left
recursion and eliminated as shown above. There are two
cases:

Case 1.

A→Bv, B∈ N, B≠A

Expand B in A→Bv, and attempt to remove left recur-
sion from the new productions introduced.

3

Case 2.

A→bv, b∈

Since b is an action symbol, we cannot rewrite it, we
cannot remove left recursion, and hence we cannot
produce an LL parser for the grammar.

Factoring. The factoring phase attempts to rewrite the
grammar so that for any two productions for the same
nonterminal, A→u and A→v,

FIRST(u)∩FIRST(v)=∅ .

The trivial way for FIRST(u)∩FIRST(v)≠∅ is for u
and v to begin with the same string of symbols, y.
These may be directly factored as follows:

A → y u1 | ... | y un | w1 | ... | wm

becomes

A → y A' | w1 | ... | wm

A' → u1 | ... | un

where A' is a new nonterminal symbol. Direct factor-
ing consolidates several productions that begin with
the same sequence of symbols.

However, more than one right hand side may derive
the same symbol(s) first without having a common
prefix. In this case the parser generator resorts to deep
factoring: expanding initial nonterminals in right
hand sides until direct factoring is possible.

To decide which nonterminals to expand, the parser
generator computes the conflict set, C for a nontermi-
nal A with productions A→ u1 | ... | un:

which is to say, C is the set of symbols that are in
more than one FIRST set.

Deep factoring expands nonterminal B in production
A→Bv if FIRST(Bv)∩C≠∅ and B∉ C. Replacing B
with each of its right hand sides will eventually pro-
duce productions that begin with the same strings of
symbols and can be directly factored. If B is in the

conflict set, we do not expand it because B itself is a
symbol that can be factored. The process will termi-
nate because left recursion has already been elimi-
nated.

Direct factoring, as shown above, introduces a new
nonterminal and productions. Those productions may
require deep factoring, leading to further deep factor-
ing, and so on. To avoid infinitely many rewritings,
the parser generator limits the number of levels it will
pursue this process.

At this point, the grammar may already be in LL(1)
form. If so, the parser generator need not generate any
look-ahead trees.

Generating look-ahead trees. The parser generator
calculates the follow set, follow(A), for each nonter-
minal A, the set of terminal symbols that can follow A
in some sentential form.

follow(A)={ t | t∈ T and s⇒∗ uAtv}

If A has productions A→ w | u1 | ... | un where w⇒∗ ε,

then the grammar is not LL(1) if

FIRST(ui)∩follow(A)≠∅

for any of the productions A→ui.

The parser generator must decide whether to build a
look-ahead tree or to treat A as a dangling-tail (a gen-
eralization of the dangling-else, which cannot be
made LL(k)).

The parser generator considers a nonterminal A to be
a dangling tail if it derives the empty string and its
only occurrences on right hand sides are of one of the
two forms:

B→u D A

where D∈ N, and D⇒∗ vA, or

B→A

and B is a dangling tail.

Dangling tails are handled in the usual fashion; the
parser is instructed to prefer a non-empty-deriving
alternative to the empty-deriving one.

C FIRST ui() FIRST uj()∩()
i j≠
∪=

4

If the productions for a nonterminal are neither LL(1)
nor an instance of a dangling tail, the parser generator
will try a look-ahead of up to k symbols. The reason
SLL(k) grammars have been rejected for k>1 is that
they were formulated in terms of k-tuples of look-
ahead symbols, which requires excessive table space,

O(|N|k). Our parser generator uses look-ahead trees,
and that only where necessary, usually resulting in
only modest space requirements.

The look-ahead tree is represented as a finite state
automaton (fsa) whose transitions, in turn, are repre-
sented as a right regular grammar. Each fsa state is
represented by a new look-ahead nonterminal. Let the
set of look-ahead nonterminals be . The fsa transi-
tions are represented by productions

A→ tB

where A∈ , B∈ , and t∈ T. The accepting states are
represented by productions

D→ hj u

where h∈ is a special action symbol and the fsa has
found that it should replace a nonterminal, E, with
string u (i.e. production E→u) after a look-ahead of
j≤k symbols. The action h removes one token from
the semantics stack and pushes it back in front of the
input to be read again later.

The computation of the look-ahead tree is based on a
novel computation of the FOLLOWk relation.

FOLLOWk(A)={x | s$k
⇒

∗ uAv$k and

x∈ FIRSTk(v$k)}

where $k represents a string of k end-of-input sym-
bols.

The parser generator creates a set, , of follow nonter-
minals, FA, one for each nonterminal A of the CFGA,

and a set of follow productions, . For each occur-
rence of a nonterminal A on the right hand side of a
production B→uAv in the CFGA, the parser generator
creates a follow production

FA→ v FB

For the start symbol, it creates a production

Fs→ $k

Recalling the underlying CFG is

G=(N∪ ,T,s,P∪ {A→ε | Α∈ })

observe that CFG

(,N∪ T∪ , FA,)

is a grammar for the symbols that may be on the pre-
diction stack beneath an A. Similarly, CFG

G’=(∪ N∪ ,T,FA, P∪ ∪ {A→ε | Α∈ })

describes the strings of terminal symbols that may fol-
low an A in a sentential form. Finally we observe that

FOLLOWk(A)=FIRSTk(FA)

where FOLLOWk(A) is computed in grammar G and

FIRSTk(FA) is computed in grammar G’.

Beginning look-ahead. If A has productions A→ w |

u1 | ... | un | v1 | ... | vm where w⇒∗ ε, FIRST(ui)∩fol-

low(A)≠∅ and FIRST(vj)∩follow(A)=∅ , build a list

of states, SL. Each state has two components (r,p),
where r is a prediction string and p, a production. Cre-
ate the following states and insert then into SL:

(w FA, A→ w), where w⇒∗ ε

(ui FA, A→ui), where FIRST(ui)∩follow(A)≠∅

This list of states is passed to a procedure build-
LookAheadTree which returns a nonterminal. Let

B=buildLookAheadTree(SL,0)

We replace the productions for A with A→ B | v1 | ... |

vm.

Algorithm for buildLookAheadTree(SL,d). SL is a list
of states and d is the depth, an integer.

Step 1. If all the states in SL have the same produc-
tion, A→u, create a new nonterminal B and a produc-
tion

B→hd u

5

where h is the action symbol to backup, i.e. pop the
top token off the semantics stack and push it back in
front of the input. Return B.

Step 2. If d is greater than the maximum look-ahead
depth, k, then report that a look-ahead greater than k
symbols is required.

Step 3. Process the list of states, SL, as follows until
each prediction string begins with a terminal symbol:

Case 1: (a u, p), where a∈

If the prediction string begins with an action symbol,
remove (a u, p) and insert (u,p) in its place.

Case 2: (B u, p), where B∈ N

Expand B, i.e. remove (B u, p) and insert (vu,p) for
each production B→v.

Case 3: (FB, p)

Remove (FB, p) and insert (v, p) for each follow pro-
duction FB→v, unless FB has already been expanded

in the current set of states. Suppose there are two
states (FB, p) and (FB, q). If p≠q then there will be no

string of look-ahead symbols to distinguish between p
and q. If p=q then the insertion of the states (v, p)
would be redundant and could result in an infinite
loop in the parser generator.

Step 4. Once all the states begin with terminal sym-
bols, create a new look-ahead nonterminal B. Parti-
tion the states into sublists whose prediction strings
all begin with the same symbol. Let L be the partition
where all predictions begin with t, and L’ be L where
the initial t removed from each prediction. Let

C=buildLookAheadTree(L’,d+1)

Add a look-ahead production

B→t C

When all the partitions have been processed, return B.

Results
The current version of the SLL(k) parser generator,
TCLLk [Christopher99], is written in Icon. It incorpo-
rates panic mode error repair.

There are a number of questions to be answered about
a new parser generation algorithm, the current favor-
ite parsing algorithm:

• What is the class of grammars accepted? Or
more importantly, how convenient is it for
expressing programming language gram-
mars?

• What is the size of the parsing tables pro-
duced?

• What is the speed of the parsers?

We are particularly interested in the answers in com-
parison to LALR(1), the currently most popular pars-
ing algorithm.

Generality. To show that neither the class of gram-
mars accepted by LALR(1) nor that accepted by our
rewriting SLL(k) technique includes the other, we
experimented with two grammars:

The first was a simple grammar known not to be
LL(k) for any k, but which is LALR(1). As expected,
TCLLk could not generate a parser for this grammar.

The second was a grammar which is LR(1), but not
LALR(1). TCLLk successfully generated a parser for
this grammar.

Table size. Estimates are that LL(1) produces parsing
tables about one third the size of LALR(1) tables for
the same size grammar as grammars grow larger
[Fischer88]. For the same programming language,
however, the LL(1) grammar is larger than the
LALR(1) grammar. To see what effect TCLLk would
have on the sizes of parse tables, we applied it to sev-
eral programming language grammars.

When applied to the sample grammars, the number of
nonterminals, productions, and the total number of
symbols on the right hand sides of productions grew
as shown in Table 1.

With the exception or Java, there are no expansions of
more than a factor of 2 in numbers of nonterminals,
productions, or summed lengths of productions for
and language.

To compare to LALR(1), we passed the grammars
through a translation program to put them in Yacc
form and then passed them through Bison. Table 2
shows the number of shifts, reduces, states, and con-

6

flicts Bison reported. Only the EULER grammar was
completely acceptable. The grammars with shift/
reduce conflicts may produce correct parsers; they
can be caused by such things as dangling elses, and
they are resolved by shifting. The reduce/reduce con-
flict for the C grammar guarantees that it’s LALR(1)
parser isn’t correct. The problems do not prevent us
from using the grammars to compare table sizes.

Figure 2. shows a comparison of parse table sizes.
The LALR(1) sizes are computed using Fischer’s and
LeBlanc’s formula [Fischer88], from the parsers pro-
duced by Bison. It assumes the empty entries are com-
pressed from the tables, but does not consider other
size optimizations. The TCLLk are estimated based
on the fraction of selection table occupied, the sum of
lengths of the right hand sides, and the number of ele-
ments in the default table (explained next). It omits
the error recovery information. The units are not
bytes. They are for crude comparison purposes only.

The default table in the TCLLk is used as follows:
The parser looks up the nonterminal on the top of the
prediction stack and the next symbol in the input in
the selection table. If it finds an associated right hand
side, it replaces the nonterminal with that right hand
side. If it doesn’t find the pair, then it looks up the
nonterminal in the default table. If the default table
maps the nonterminal into a right hand side, it
replaces the nonterminal with that. If neither table
specifies a right hand side, the parser has detected an
error in the input.

TCLLk always uses the default table for nonterminals
that have only a single right hand side. That is all it
uses the table for normally. The mode with aggressive
defaulting also includes in the default table the right
hand side selected by the most terminals, omitting it
from the selection table. The saving in space is evi-
dent from Figure 2. TCLLk’s parsers without aggres-
sive defaulting are noticeable smaller than the
LALR(1) parsers without compression. TCLLk’s
parsers with aggressive defaulting can be expected to
be much smaller than LALR(1) parsers that were
compressed by removal of error entries, but not by
such things as merging rows of the action table. This
leads us to expect we will find them still to be smaller
than LALR(1) with more ambitious compression.

A Java Grammar. To test TCLLk against LALR(1)
for a practical language, we cut and pasted an
LALR(1) Java 1.1 grammar from The Java Language
Specification [Gosling96] and reworked it to be

acceptable to TCLLk. The authors of the Specifica-
tion discuss the problems they had in converting their
Java grammar to LALR(1) form. Here we discuss the
difficulties we had converting their LALR(1) gram-
mar for TCLLk’s use.

First, we passed the grammar through a small Icon
program to put it in proper input syntax for TCLLk.
TCLLk then reported nine errors. These errors came
from three sources.

First, Java has a dangling else clause. LL parser gen-
erators have to give dangling elses special treatment.
LR parser generators can handle them in the grammar.
The Java grammar included a number of nonterminals
with names containing “NoShortIf”, e.g. Statement-
NoShortIf. Short ifs are if-statements without else-
clauses. The rule is that an if statement with an else
clause cannot contain an if statement without an else
before its else. We removed the “NoShortIf” ver-
sions of statements, a simplification of the grammar
that removed nine productions.

Second, TCLLk complained about the number of fac-
torings needed and about look-ahead depth being
exceeded. The complaints involved various levels of
expressions.

To find the problem, we started with Primary and
related nonterminals and repeatedly added more
expressions to it, running it through TCLLk, looking
for where the problems occurred. The errors occurred
when AssignmentExpression was added.

One of the nasty constructs for LL parsers is assign-
ment expressions. They are high level expressions—
many levels from identifiers and literals—but their
left hand sides are usually some low level of expres-
sion. Handling them requires deep factoring, replac-
ing nonterminals with their right hand sides
repeatedly until direct factoring is possible.

TCLLk tried deep factoring, but for whatever reason,
it didn’t work. We resorted to a trick often used when
building parsers: we replaced the left hand side with a
slightly higher level of expression, the lowest level at
which TCLLk reported no errors, knowing that this
will accept syntactically illegal constructs, but that we
can reject them in the semantics routines.

Third and finally, there was a problem with switch
statements. They have an optional list of Switch-
BlockStatementGroups followed by an optional list of

7

SwitchLabels just before the final “}”.

SwitchStatement = switch "(" Ex-
pression ")" SwitchBlock .

SwitchBlock = "{" SwitchBlock-
StatementGroupsopt
SwitchLabelsopt "}" .

Since each SwitchBlockStatementGroup begins with
one or more SwitchLabels, there was a look-ahead
conflict: seeing “case”, a parser couldn’t decide for
SwitchBlockStatementGroupsOpt whether to look for
SwitchBlockStatementGroups or choose the empty
alternative.

We used TCLLk’s extended input syntax to solve the
problem:

SwitchBlock = "{"
{ SwitchBlockStatementGroup }
SwitchLabelsopt "}" .

The repetitive form, {x}, means zero or more repeti-
tions of x. TCLLk translates

A = u { v } w.

into

A = u A’.

A’ = w .

A’ = v A’.

This allows the w and v to be factored. In the switch
statement, it allows the final optional SwitchLabel to
be factored against the SwitchLabel that begins a
SwitchBlockStatementGroup. This worked, and
TCLLk found no further problems with the Java
grammar.

Overall, there was not much work in converting an
LALR(1) grammar to TCLLk using the default limit
of 3 factorings per nonterminal and a 2 symbol look-
ahead.

Table 3 shows the figures for the Java grammar before
and after these by-hand transformations and after
TCLLk processed it.

How long does TCLLk take to build and write out
parse tables for Java? The time taken to load and run
TCLLk on the Java grammar was about 8 seconds on
a 200 MHz Pentium PC running Windows NT. A
more careful experiment could be done easily, but it
doesn’t seem worth it: The execution time is trivial.

Parser speed. Both LALR(1) and LL(1) parsers are
linear time in the length of the input. How will k-sym-
bol look-ahead affect TCLLk’s parser’s speed?

Look-ahead won’t change the linear time. A full k-
symbol look-ahead reads k symbols then backs up k
symbols, then reads one. Suppose k symbol look-
ahead were required for every symbol the parser
reads. That would increase the time it spends reading
the program by a factor of (2k+1). Of course, the
increase in compiler execution time is unlikely to be
anywhere near that, because

• a compiler does more than read and recognize
the program, so it’s only a fraction that will
take longer,

• practical programming language grammars
should not have a k-symbol look-ahead on
every symbol—indeed very few, and

• TCLLk can remove back-ups on look-ahead
if the back-up action symbols are followed by
terminal symbols.

To see what fraction of the tokens read might be
backed up over and read again, we implemented a
Java scanner and parser and tried it out on several
Java code files. Table 4 shows the number of tokens
read and backups.

For a parse using the Java grammar, about one backup
occurred for each five tokens read. This was astonish-
ingly high. An examination of the translated grammar
showed the reason: a Name looked ahead beyond the
Identifier. The cause appeared to be TypeImportOn-
DemandDeclaration:

TypeImportOnDemandDeclaration =
import Name "." "*" ";".

which says that a Name can be followed by ". *".
Since a Name can be a "Name . Identifier", a
“.” following a Name required look-ahead.

The obvious optimization was to redefine Import-
Declarations as follows:

ImportDeclaration = import Im-
portName ";" .

ImportName = Identifier "." Im-
portName.

ImportName = Identifier "." "*".

ImportName = Identifier .

8

After making this change, the backups are as shown in
Table 4. The fraction of backups was made utterly
trivial.

Discussion
We have presented a strong LL(k) parser generator
that

• requires about as little manipulation of grammars
by the user as LALR(1). It allows left recursion
and intersecting First sets.

• produces parse tables highly competitive with
LALR(1) tables in size.

• builds look-ahead trees when, and only when,
greater than one-symbol look-ahead is required.

• uses LL(1) parsing tables.

Overall, we expect this technique to be highly com-
petitive with LALR(1).

References
[Christopher99] Christopher, Thomas W., User Man-
ual for TCLLk: A Strong LL(k) Parser Generator and
Parser, Technical Report 1999-3-#1-TC, Tools of
Computing LLC, P. O. Box 6335, Evanston IL,
60204-6335, http://www.toolsofcomputing.com,
1999.

[DeRemer69] DeRemer, F., Practical translators for
LR(k) languages. Ph. D. Dissertation, MIT, 1969.

[DeRemer82] DeRemer, F., and T. Pennello, “Effi-
cient computation of LALR(1) look-ahead sets.”
ACM TOPLAS 4,4 (Oct. 1982), 615-649.

[Fischer88] Fischer, Charles N., and Richard J. LeB-
lanc, Jr., Crafting a Compiler, Section 6.11 “LL(1) or
LALR(1), That Is the Question,” The Benjamin/Cum-
mings Publishing Company, 1988.

[Gosling96] Gosling, James, Bill Joy, Guy Steele, The
Java Language Specification, Edition 1.0, Addison
Wesley, 1996. HTML downloaded from www.java-
soft.com.

[Knuth65] Knuth, D. E. “On the translation of lan-
guages from left to right.” Information and Control 8
(1965), 607-639.

[Lewis68] Lewis, P. M. II, and R. E. Stearns, “Syntax-

directed transduction,” JACM 15 (1968), 464-88.

[Parr93] Parr, T. J., Obtaining practical variants of
LL(k) and LR(k) for k>1 by splitting the atomic k-
tuple. Ph. D. Dissertation, Purdue University, 1993.

[Rosenkrantz70] Rosenkrantz, D. J., and R. E.
Stearns, “Properties of deterministic top-down gram-
mars.” Information and Control 17 (1970), 226-256.

Figure 1. LL(1) parsing algorithm.
Initially, place the start symbol and the EOI (end

of input) symbol on the prediction stack
with the start symbol on top. Put EOI at the
end of the input. Make the current token
empty. Make the semantics stack empty.

Repeat

Pop the top symbol off the prediction stack.

While it is an action symbol, call its action
routine and pop the next top symbol off
the prediction stack. The action routine
may pop zero or more values off the se-
mantics stack and may push one or zero
values back on it.

If the current token is empty, call the scan-
ner to read the next input token into the
current token.

If the top symbol from the prediction stack
is a terminal, compare it to the current
token.

If they match, push the current token
onto the semantics stack. Make the
current token empty.

If they don’t match, an error has been
discovered in the input. Execute
error recovery code.

Otherwise if the top symbol from the pre-
diction stack is a nonterminal, then
choose one of its right hand sides and
push it on the prediction stack, right-
most symbol on bottom. Choose the
right hand side by looking at the cur-
rent token and deciding which right
hand side will allow parsing to contin-
ue.

until the EOI symbol is matched.

9

Table 1: Increase in grammar size.

Grammar Initial After TCLLk Growth

C Nonterminals 80 133 66.3%

Productions 215 323 50.2%

Total RHS 401 599 49.4%

EULER Nonterminals 33 46 39.4%

Productions 94 111 18.1%

Total RHS 185 220 18.9%

Icon Nonterminals 48 75 56.7%

Productions 155 297 91.6%

Total RHS 331 584 76.4%

Pascal Nonterminals 37 46 24.3%

Productions 84 93 10.7%

Total RHS 187 184 -1.6%

Java Nonterminals 155 196 26.5%

Productions 312 587 88.1%

Total RHS 561 1303 132.3%

Table 2: LALR(1) parsers generated from TCLLk-accepted grammars.

Grammar shifts reduces states shift/reduce con-
flicts

reduce/reduce con-
flicts

C 2836 260 342 2 2

EULER 1833 96 165 0 0

Icon 3429 162 270 7 0

Pascal 581 91 162 1 0

Java 4464 352 495 4 0

10

Figure 2. Estimated parse table sizes.

Parse table sizes

0

1000

2000

3000

4000

5000

6000

C

EULE
R

Ico
n

Pas
ca

l
Ja

va

S
iz

e

LALR(1)

TCLLk

TCLLk with aggressive
defaulting

Table 3 Java grammar through TCLLk.

Original
LALR(1)

Input to
TCLLk

After
TCLLk

number of nonterminals: 160 155 196

number of productions: 331 312 587

number of symbols on right hand sides: 603 561 1303

11

.

Table 4 Backups in Java files.

Java file backups tokens in
file

backups as % of
tokens, initially

backups as % of
tokens after creat-
ing
ImportName

com.toolsofcomputing.
SharedTableOfQueues

96 422 23% 0%

com.toolsofcomputing.FutureQueue 130 519 25% <1%

java.util.Hashtable 366 1660 22% 1%

java.util.Vector 250 1268 20% 1%

java.util.StringTokenizer 97 454 21% 1%

java.util.BitSet 256 1329 19% <1%

java.util.Date 472 2349 20% 3%

java.util.Calendar 346 2014 17% 2%

