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Introduction

Chapter 1 Introduction

Parsing, finding the phrasesin a program, isthefirst job of acompiler. The

LL (1) parsing algorithmis probably the easiest parsing algorithm to understand
and the easiest program for error recovery. The*(1)” in LL(1) indicatesthat the
parser gets to look ahead one symbol during the parse. But LL(1) parsing algo-
rithms require skill to use. They require that the programming language gram-
mar be rewritten, usually extensively, to be put in LL(1) form.

LL (k) parsing, where the parser getsto look k symbols ahead, isthe generaliza-
tionof LL(1). Thelarger the value of k, the more “powerful” the parser is, that
isto say, the more grammarsit can handle. Unfortunately, LL parsers aretable
driven, and the usual design of LL (k) parsers requires much too much table
space for any k>1. If the number of terminal symbolsist, they require O(tY).

Thisdocument describestheuseof TCLLk, aStrong LL (k) parser generator and
parser, written in the Icon programming language. The parser generator builds
tables for the parser to use. Its most important features are:

(2) It rewrites the grammar itself to try to put it into LL(1) form. This makes it
alot easier to use than most LL (K) parser generators.

(2) It resorts to look-ahead of greater than one symbol only when it hasto.

(3) It converts the extral ook-ahead into look-ahead treesusing L L (1) grammar
productions. The TCLLKk parser usesLL (1) tables. The size of the tablesis, in

practice, much smaller than they would be with atraditional LL (k) parser gen-
erator.

(4) Like TCLL1 (an earlier LL(1) parser generator), TCLLk uses “action sym-
bols’ to interface to the semantics routines of acompiler.

(5) Like TCLL1, TCLLKk provides“panic mode” error repair.
Topicsin this document include

1. how to build the parser generator,

2. how to write the grammar

3. how TCLLKk rewritesitinto LL(1) form,

4

. how the parser handles error recovery, and
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5. how to interface to the parser to the compiler’ s semantics routines.

The goal of this document is to give compiler writers the training they need to
use the TCLLK parser generator to build parsers for their compilers. In an at-
tempt to be self contained, it includes abrief introduction to context free gram-
mars, so many readers will wish to skim or skip parts of this document.

TCLLK isanimprovement on TCLL1. Some of the discussion will show what
TCLL1 doeswith agrammar to contrast it to what TCLLk does. Some of the
program files and data structures are the same for both parser generators. This
document itself isamodification of the document TCLL1: AnLL(1) Parser

Generator and Parser, by the same author.

Lt may take a few passes to clean up this document, updating the parts of the discussion
from TCLL1to TCLLK.

10 Copyright © 1996, 1999. Thomas W. Christopher



Building the parser generator

Chapter 2 Building the parser generator

Before reading the rest of this description of TCLLK, you should compileit on
your own system. That will allow you to try out the test grammars as they are
discussed.

If you do not have acopy of Icon, you can get it over the Internet through the
World Wide Web at, http://cs.arizona.edu/icon/.Y ou may also want to pick up
the Icon Programming Library.

If you havethe lcon Programming Library (IPL) installed on aWINDOWS ma-
chine, you can execute the batch file buildk.bat (or buildknt.bat) to build the
parser generator. The four files from the IPL that the parser generator uses are
included with this distribution and can be compiled separately. To build the
parser generator by hand, you may execute

rem These are fromthe Icon ProgramLibrary:
icont -c xcode escape ebcdic options pathfind
rem These formthe parser generator proper

icont -c grananal |1k senstk readl |k parsellk
i cont -c scangram sengrank
icont -fs tcllk

Thefirsticont linecompilesthefilesfromthelPL. Y ou may omit thelineif you
have the IPL installed. The second icont line compiles modules used by the
parser generator. The third line compiles the parser generator’ s main program.
The flag -fs tells the trandator that the parser generator calls some procedures
by giving their names as strings.

To use TCLLK to build a parsing table, execute
tcllk grammar.grm

where grammar.grmisthe grammar file. The output of the parser generator will
be encoded parse tablesin file grammar .llk.

Y ou can also specify flags and options on the command line
tcllk options grammar.grm

Optionsin TCLLk’s command line are

Copyright © 1996, 1999. Thomas W. Christopher 11
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-v for verbose output, giving the grammar after every transformation
-p for alisting of the grammar productions before and after transformation

-efor agrammar listing after al transformations have been done, including
information on sets of symbols used to build the parse tables

-Sto write out “statistics’ after the various transformations.

-d to choose some productions by default if no others are selected (this pro-
duces smaller table size, but not as good error recovery).

-kn for integer n restricts the look-ahead to no more than n symbols. The de-
fault is 2.

-fn for integer n restricts the number of “deep factoring” iterations to no
more than n for a particular nonterminal. The default is 3.

TCLLk readsits own parsing table from file tcllk.Ilk which must bein the cur-
rent directory or in the path bound to the environment variable LLPATH, or if
that isn’t set, then environment variable DPATH. The directory namesin the
path are separated by blanks, an Icon Program Library convention.

12 Copyright © 1996, 1999. Thomas W. Christopher
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Chapter 3 Context-Free Grammars

3.1

Context-free grammars

TouseLL(1) parsers, you need to be skilled at manipulating context-free gram-
mars. TCLL1istypical of LL(1) parsers. TCLLK, however, does alot of the
work for you. Alas, the difficult rewritings are difficult in both systems.

In any event, you must write context free grammars (CFGSs) to giveto the parser
generators. Here isa discussion of CFGs.

In the jargon of formal language theory, a context-free grammar (CFG) isa“4-
tuple” (N,T,s,P). That isto say, it has four parts..

» T—aset of termina symbols, the words in the language;

* N—aset of nonterminal symbols which do not themselves appear in sen-
tences, but are used to generate sentences.

* s—one of the nonterminals, the start symbol.
* P—aset of productions, the rules for generating sentences.
(In alater section, we will add another part: a set of action symbols.)
A production of a CFG istypically written
LHS - RHS

Where LHS, the “left hand side” of the production, isa single nontermina sym-
bol and RHS, the “right hand side” of the production isa string of zero or more
symbols, termina and nonterminal.

Thearrow isametalinguistic symbol: it isused to write the productions; it isnot
part of the language they describe.

Since we are using a particular parser generator, TCLLK, we will follow itsin-
put syntax and write the productions as

LHS=RHS.

with the equal sign and period as metalinguistic symbols.

Copyright © 1996, 1999. Thomas W. Christopher 13
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We will speak of aleft hand side as “possessing” the productions or the right
hand sides of the productionsit appearsin. We will also speak of theright hand
side being aright hand side “for” the left hand side symbol.

The productions are rewriting rules. A sentence is generated by starting with a
string composed solely of the start symbol and repeatedly replacing a nontermi-
nal in the string with one of itsright hand sides. When there are only terminal
symbols left in the string, the string is called a sentence in the language.

Each singlerewriting iscalled aderivation step. A sequence of derivation steps,
especially the sequence leading from the start symbol to a sentenceis aderiva-
tion. A derivation step iswritten

UAW = uvw

where A= v . isaproduction and u and v are any strings of zero or more sym-
bols. A derivation composed of zero or more derivation stepsis written:

*
Uu— Ww

In TCLLK, anonterminal or terminal symbol iswritten asan identifier or asany
string of printable symbols surrounded by quotes. Anidentifier isthe same sym-
bol whether it is quoted or not, i.e. X isequivalent to “X”.

We will use the expression grammar Figure 1 in many of our examples.

Figurel

Expression grammar

stat=e.
e=e"+"t.
e=e"-"t.
e=t.
t=f"*"t.
t=f"/"t.
t=f.

f=i.
f=""e")".

TCLLk assumesthe start symbol is named start. Since wereally wanted e to be
the start symbol, we put in a production

sat=-e.
The terminal symbolsare“ (", ")", "*", "+","-","/", and i.

The nonterminal symbols are start, e, t, and f.

14 Copyright © 1996, 1999. Thomas W. Christopher
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3.2 Derivations
All strings derived from the start symbol are called sentential forms. A sentence
isasentential form composed entirely of terminals.
Figure 2 an example of the derivation of a sentence.
Figure2  Thederivation of a sentence

start

e

t

f*t

(e)*t

(e-t)*t

(t-t)*t

(f-t)*t

(i-t)*t

(i-f*t)*t

(i-i*t)*t

(i-iI*f)*t

(i-1*i)*t

@i-i*i)*f

@i-1*1)*i
Not only wasthisaderivation, it was aleftmost derivation; we always replaced
the leftmost nonterminal in the string with aright hand side. We could have
donearightmost derivation, always replacing the rightmost nonterminal. Or we
could havereplaced arbitrary nonterminals. Sincethe nonterminalsarereplaced
without regard to the symbols that surround them, the sentences we can derive
don’t depend on the order of replacement. That is the meaning of “context-
free”. However, the set of sentential formswe can derive do depend onthe order
of replacement.
A leftmost derivation step iswritten

UAW = uvw
where u must be composed entirely of terminalsand A = v . isaproduction.
Similarly, = * represents a leftmost derivation; =g , arightmost derivation
step; and =R* , arightmost derivation.
AnLL parser finds aleftmost derivation of the input sentence.
3.3 Phrases

A phraseisasubstring of a sentential form that was derived from a single non-
terminal during the derivation of the sentential form. When we compile a pro-
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gram, we will deduce the meanings of phrases from the meanings of the words
and phrases contained within them. In the sentence (i-i*i)*i derived above, the
substring i-i*i is a phrase; it was derived from an e. Within thei-i*i, i*iisa
phrase, but i-i isnot. Although the string i-i could be derived from an e, in this
derivation it was not.

Notice that for two phrasesin a sentential form, one of the following istrue:

* oneisasubstring of the other, or

» they have no symbolsin common, or

* they are the same string.

3.4 Bugsin grammars
Context-free grammars can have bugs in them. The grammar in Figure 3 exhib-
its three common bugs.
Figure3 Grammar bugs.grm
start = e.
e: e"+" t .
e: e ll_ll t .
t - t ll*ll t .
t=t"/"t.
t="1.
p=i.
p - ll(ll ell)ll .
If we pass this grammar through TCL LK, we get the error messages shown in
Figure 4.
Figure4 Error messages from bugs.grm (Figure 3).

VMr ni ng:
VMr ni ng:
VMr ni ng:

Error: start does not appear to derive a termnal string
Error: e does not appear to derive a term nal string

WAr ni ng: p cannot appear i i i
( cannot appear i

2 errors and 4 warnings

be removed.
be remmoved.
be remmoved.
be remmoved.

a sentential form
a sentential form
a sentential form
a sentential form

it will
cannot appear i it will
it will
it will

cannot appear i

We got the first two errors by removing the production "e = t.". Once we have
thesymbol einastring, wecan't get rid of it: ecan only be replaced with strings
containing an e. Since start only goesto e, start too cannot derive a string com-
posed entirely of terminals.

The reason TCL Lk says the symbols do not appear to derive aterminal string
has to do with itsalgorithm. It tries to cal culate the minimum length of astring

16 Copyright © 1996, 1999. Thomas W. Christopher
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of terminals the nonterminal can derive. If it can’'t satisfy itself that the nonter-
minal can generate astring of lessthan acertain largelength, it reportsthe error.
Y ou canfool it by writing agrammar that will only generate sentences of greater
than that length.

Theerrorsstatingthat p,")", " (", and i cannot appear in asentential form simply
means that there is no sequence of derivation steps starting from the start sym-
bol that can derive a string containing those symbols. The bug may be that we
should have used f rather than p in the last two productions, or we should have
had some more productions for f including "f = p.".

Ambiguous grammars

Soletsfix the errorsin bugs.grm (see Figure 3 on page 16), getting the grammar
LnRRecBug.grm (Figure 5).

Figure5

Grammar LnRRecBug.grm

start = e.
e: e"+" t .
e=e"-"t.
e=t.
t=t""t.

TCLLk givesthe error messages shown in Figure 6.

Figure 6

Error: t

is both left and right
1 error and 0 warnings

Error message from LnRRecBug.grm (Figure 5).

recursive, the grammar is anbi guous

The error

Error: t is both left and right recursive, the grammar
i s anbi guous

reports on one of the most common bugs in grammars used for programming
languages. To understand it, we need afew concepts first.

A sentence derived using a particular grammar is ambiguousif there is more
than one way to divide it up into phrases. It can be proven that the sentence is
ambiguousif and only if it has more than one leftmost derivation. A grammar
isambiguousif it can generate any ambiguous sentences.

Copyright © 1996, 1999. Thomas W. Christopher 17
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Sincethe phrasesof asentence are used to determineits meaning, an ambiguous
sentence can have more than one meaning. An ambiguous programming lan-
guage grammar would militate against reliable software.

An additional problem for compiler writersisthat there are no fast parsing al-
gorithms that work for ambiguous grammars. (Some parser generators will ac-
cept ambiguous grammars, but most of them resolve the ambiguity internally
before generating the parsers.)

It would be nice if we could find out if agiven grammar is ambiguous. Unfor-
tunately, it isimpossibleto do that in general. It isincomputable whether an ar-
bitrary context free grammar is ambiguous. There is no algorithm that can take
an arbitrary context free grammar and report whether it is ambiguous or not. It
isnot, mind you, that we don’t know the algorithm yet. We can prove that there
is no such algorithm possible.

For particular grammars we may be able to prove they are ambiguous or unam-
biguous, but there will always be some that we cannot be sure about. Here are
two classes of grammars we can know about:

» If the grammar is accepted by TCLLk without any warnings or errors, it is
unambiguous.

» If the grammar isleft and right recursive in the same nonterminal, it is am-
biguous.

A nonterminal isleft recursiveif it can derive astring inwhich it appears asthe
leftmost symbol. It isright recursiveif it can derive astring in which it appears
as the rightmost symbol. Don’t consider only leftmost derivations for this defi-
nition of right recursive: the symbol might be followed by some nonterminals

that derive the empty string that we have to get rid of. Consider the grammar

A=iAB|i.
B=.
A isright recursive which can be seen from the rightmost derivation
A
iAB
i A
i
but not from the leftmost derivation
A
iAB
iiB
i
If agrammar is both left and right recursive in the same nonterminal then the
grammar isambiguous. Asaproof, suppose A isboth left and right recursivein

18 Copyright © 1996, 1999. Thomas W. Christopher
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areduced grammar (i.e., agrammar without bugsin it), then there are strings v,
w, X, Y, and z such that:

A= *Av
A= " XAw
A=LMY
W:>|_*

Vo ¥z

where

vONOT)
xOT
w ON”
yOoOT
z0T

(that isto say, X, y, and z are strings of terminals, w isa string of nonterminals
that can derive the empty string, and v is a string of any symbols).

Thisallowstwo different leftmost derivations of xyz from A shown by these sen-
tential forms along the derivation:

A A
= AV = *XAW
=1 *XAwyv =1 *XAvVw
=1 XYyWwWV =¥ XYyVvVw
=S¥ XYV =L*Xyzw
=>L*Xyz =>1*Xyz

Sinceanonterminal being both left- and right-recursiveisacommon bug in pro-
gramming language grammars, TCL Lk checksfor it, but remember, there are
many other ways for grammars to be ambiguous as well.

Leftmost derivation algorithm

Sentences can be generated with aleftmost derivation using a prediction stack.
The agorithm is shown in Figure 7 on page 20.

Wecall the stack the prediction stack sinceit predictswhat symbolsand phrases
will be generated |ater.

Copyright © 1996, 1999. Thomas W. Christopher 19
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Figure7

3.7

Leftmost derivation algorithm.

THE LEFTMOST-DERIVATION ALGORITHM

Initially, place the start symbol on the prediction stack.
Repeat

pop the top symbol off the prediction stack
if itisaterminal, writeit out

if it isanonterminal, then choose one of itsright hand sides and push it
on the prediction stack, leftmost symbol on top

until the prediction stack is empty.

Extended syntax

To make it more convenient to write grammars, TCLLk provides an extended
syntax for expressing alternatives, groupings, optional parts, and repetitions.
We show how they may be used with the expression grammar given above:

0)

[]

thevertical bar isused to separate alternatives. It is customarily used to
combine all the productions for asingle nonterminal into asingle rule.
It can also separate aternatives within groupings. We can, for example,
shorten our expression grammar from nine lines to four:

sart=e.

e=e"+"t |e"-"t]|t.
t=f"" et /et
f=i["("e")".

parentheses are used to group symbols and alternatives. We can group
the operatorsin our expression grammar as follows:

Start=e.

e=e("+ |"")t[t.
t=f (" ") tf .
f=i|"("e"m".

brackets group optional items; [X] isequivalent to (x | ); that is, a brack-
eted item is equivalent to the enclosed item or the empty string. In our
expression grammar, the alternatives for t provide an optional part:

sat=e.
e=e("+"|""t|t.
t=f [(*"]")].
f=i|"("e")".

20 Copyright © 1996, 1999. Thomas W. Christopher
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{ } bracesgroup itemsthat may occur any number of times. Thealternatives
for e provide an example of this repetition:

stat=e.

e=t{ ('+"|™"t}.
t=f [ (")t
f=i|"("e")".

When given agrammar using the syntax extensions, TCLLk translatesit into a
pure, unextended CFG. It doesthis by introducing new nonterminalsfor all the
groupings. It constructs the names of the new nonterminals from the left hand
side symbol, line number, and position on the line where the grouping begins:

LHS lineNumber_column

Y ou should be able to figure out how grammars are transformed from the ex-
tended notation to the basic notation by comparing our final expression gram-
mar

Sat=e.

e=t{ ("+'|™"t}.
t=f [ (* ")t
f=i|"("e")".

to its transformed version:

e-te?2 7.
e27=e29te2 7.

@D
N
\‘

™ o
NN
©'©
I

TCLLk provides one further enhancement to CFGs:. action symbols. Action
symbols provide the interface between the parser and the "semantics' in the
compiler. An action symbol iswritten as an identifier followed by an exclama-
tion point:

ID !

Asfar asthe language generated from the grammar is concerned, action sym-

bolsdon’'t appear. They behave asif they were nonterminalsthat only have one
production and that production has an empty right hand side. During the parse,
however, whenever the parser finds an action symbol on the top of the predic-

Copyright © 1996, 1999. Thomas W. Christopher 21
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tion stack, it performs some action as it pops the symbol off. In alater section,
we will discuss the use of action symbols.

22 Copyright © 1996, 1999. Thomas W. Christopher
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Chapter 4 LL Parsing

4.1  Principles of LL(k) Parsing

"LL(K)" meansthe parser works L eft-to-right, finding a L eftmost derivation of
the sentence, and looking at most k symbols ahead in the input to decide what
action to take next.

Thetrick isthis: the LL(k) parser generates a sentence on top of the input sen-

tence, matching the two. When it has successfully matched al of the input sen-
tence, it has also parsed it, since the phrases of the input are the same as those

of the generated sentence.

If we are only interested in whether the input is a sentence—and not interested
inthe phrases—we call the parser arecognizer. We present an LL (1) recognizer
now, and wait to present TCLL1 and TCLLk parsers until we have discussed
action symbols. The sentence generation algorithm of the last section now be-
comes the recognition algorithm shown in Figure 8.

Figure 8 LL(1) Recognition algorithm.

THE LL(1) RECOGNITION ALGORITHM

Initially, place the start symbol and the EQOI (end of input) symbol on the
prediction stack with the start symbol on top. Append EOI to theright
end of theinput. Read the leftmost symbol from the input into the cur-
rent symbol.

Repeat
pop the top symbol off the prediction stack

if itisaterminal, compareit to the current symbol. If they match, read
the next input symbol into the current symbol. If they don’t, an er-
ror has been discovered in the input.

if it isanonterminal, then choose one of itsright hand sides and push
it onthe prediction stack, leftmost symbol on top. Choose theright
hand side by looking at the current symbol and deciding which
RHS will allow parsing to continue.

until the EOI symbol is matched.

Copyright © 1996, 1999. Thomas W. Christopher 23
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The EOI ("end of input") symbol isinserted into the set of terminals by the
TCLLK parser generator. It is used to permit the parser to recognize when the
last terminal has been read in. In areal compiler, the parser calls the scanner to
return one symbol of the sentence at atime, left to right. The scanner will return
EOI when there are no more symbols in the input.

The parser must decide what string of symbolsto replace anonterminal symbol
with by looking at the symbol and the next terminal symbol in the input. The
easiest data structure to use is atwo dimemsional array indexed by the nonter-
minal and the terminal, requiring |N|[x|T| space.

InLL(K) parsers, the LL (1) recognition algorithm ismodified to ook at the non-
terminal from thetop of the stack and the next k symbolsin the input. Tradition-
aly, LL(k) parsing usesan array of k terminal symbolsfrom theinput and looks
up the replacement for anonterminal in atable of size [N|x|T[<, indexing it the
nonterminal and the k symbolsin the array. The k-symbol 1ook-aheads are re-
aly kept asarrays of k symbols. TCLLk, however, buildslook-ahead treesonly
where the look-aheads are actually needed. An LL (k) recognition algorithm is
shown in Figure 9.

Figure9 LL(K) Recognition algorithm.
THE LL(k) RECOGNITION ALGORITHM

Initially, place the start symbol and k copies of the EOI (end of input)
symbol on the prediction stack with the start symbol on top. Append k
copies of the EOQI to theright end of the input. Read the leftmost k
symbols from the input into the current symbol array. The current
symbol array is k elementslong, indexed from 1 to k.

Repeat
pop the top symbol off the prediction stack

if itisaterminal, compare it to the current symbol[ 1]. If they match,
remove current symbol[ 1], shift the other elements of current
symbol down one position, and read the next input symbol into the
current symbol[k]. If they don’t match, an error has been discov-
ered in theinput.

if it isanonterminal, then choose one of itsright hand sides and push
it onthe prediction stack, leftmost symbol on top. Choose theright
hand side by looking at the current symbol array and deciding
which RHS will allow parsing to continue. Thisrequires atable of
size N|x|TJ.

until the EOI symbol is matched.

4.2 What TCLLK does

The big problem in LL (1) parsing is that the grammar has to be rewritten into
LL(2) form, aform in which the next input symbol can alwaystell the parser
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which right hand side to choose. In subsequent sectionswewill discusswaysto
rewrite grammars to put themin LL(1) form.

TCLLk works in two steps:

1 It rewritesthe grammar to try to put it in LL(1) form.

This saves you from having to rewrite the grammar yourself. Neverthe-
less, you may need to understand how it is done by hand to understand
the rewritten grammar that TCLLk showswhen something is still
wrong. There are some rewritesthat we will show that TCL Lk does not
perform. Y ou may need to use these yourself if TCLLK’s transforma-
tionsdon’t bring the grammar all the way to LL(1) form.

2 If step (1) doesn’'t bring the grammar all theway to LL (1) form, TCLLk
will build look-ahead trees of up to k symbols in depth. The trees are
built using LL (1) productions, so the parser can use LL (1) parsing ta-
bles.

Putting grammars into LL(1) form

It ishard to put grammarsinto LL(1) form. Here we consider the requirements
LL (1) placeson grammars, how grammars fail to meet those requirements, and
techniques for rewriting grammars to make them suitable.

First a caution. To save yourself much grief, obey this smple rule when trans-
forming grammars yourself: Y ou may introduce new nonterminals. Y ou may
revise the definitions of existing nonterminals. Y ou may delete nonterminals if
they are no longer needed. But never change the meaning of anonterminal.
Never change the set of strings a nonterminal generates.

How a grammar fails to be LL(1)

The only placein the LL(1) recognition algorithm where problems can ariseis
when anonterminal comes to the top of the prediction stack. The parser must
pick one of the nonterminal’ s right hand sides to replace it with, aright hand
side that will allow parsing to continue. To do this, it can look only at the next
symbol in theinput. As an example of wherethisfails, consider our expression
grammar productions for t and f:

" n t

f
f"r"ot
f .

—h =—h ~ ~ ~
I T I |

] ( :l e n ) n
Suppose t is on top of the prediction stack. Each of its right hand sides begins
with f. An fitself can begin with either an"(" or ani. So if we see either an"("

or ani next intheinput, we can’t possibly tell which production for t we should
use.

We need two concepts:
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» Thefirst set of astring of symbols, u, isthe set of terminal symbols, First(u),
that can occur leftmost in a string derived from u. In formal notation

First(u) ={ a| u=" av, aisaterminal symbol, uand v are strings}

* Thefollow set of anonterminal, A, isthe set of symbols, Follow(A), that can
follow Ain a sentential form. Formally

Follow(A) ={ b | s= VAbw, sisthe start symbol, bisaterminal
symbol, v and w are strings}

Now lets consider which right hand side to choose for anonterminal. Given a
production

A=u.
what terminal symbol, t, would tell us to replace A with u?

e If symbol tisin First(u), we should choose u. After al, we want to choose
theright hand side that will allow usto continue parsing, and right hand side
uwill at least be able to get past the next input symbol.

* If uistheempty string, or if it derives the empty string, and if tisin Fol-
low(A) we should choose u. After all, if theright hand side vanishes, the next
input symbol we arelooking at could be onethat follows the phrase, not one
that beginsit.

If any terminal symbol tells us to choose more than one right hand side for a
nonterminal, the grammar isnot LL(1). If no termina symbol ever tells usto
choose more than one right hand side for any nonterminal, the grammar is
LL(D).

Whenwe giveagrammar that isnot LL(1) to TCLLZ, it will give error messag-
es specifying theterminalsand productionsthat arein conflict. Figure 10 shows
the grammar "e-notll1.grm".

Figure 10

Grammar e-notll1.grm
# errors--not LL(1)

start = e .
e =e "+" t
e =e"-"t
e =1t.
t = f "*" t
t =f "/"t
t =1 .
f=1i.
f="("e")"

Here' swhat we get when we passit through TCLL 1:
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Error: eis left recursive, the grammar is not LL(1)
Error: overl apping selection sets for
1. t = f "*" t.
2. t =f "/" t.
overlap: {"(", 1}
Error: overl apping selection sets for
1. t = f "*" t.

2. t =f.

overlap: {"(", 1}
Error: overl apping selection sets for
1. t =f "/" t.
2. t =f.

overlap: {"(", i}
Error: overl apping selection sets for
1. e = e "+" t.
2. e =e"-" 1.

overlap: {"(", i}
Error: overlapping selection sets for
1. e =e "+" t.
2. e =t.

overlap: {"(", i}
Error: overl apping selection sets for
1. e =e"-" 1.
2. e =t.

overlap: {"(", i}

7 errors and 0 warni ngs

We will consider the causes and cures of these and other problemsin the sub-
sectionsto follow.

Left-recursion removal

The error messages state that the grammar isleft recursive and hence not LL(1).
Why? Consider the productions:

e — e (1] +ll t
e — e n_n t
e =t

Consider the leftmost-derivation algorithm given above. When a e appears on

top of the prediction stack, we can keep on replacing it with e+t or e-t, pushing
+t'sand -t’ sonto the stack and still leaving e on top. Eventually wewill replace
ewith t and stop the process, but no symbol in First(t) will tell how many +t's
or -t’swere pushed on the stack. Similarly, while parsing, the next input symbol
cannot tell us how many +’sor -’swe are going to need.

The TCLL 1 parser generator checksfor left recursion explicitly. The problems
also appear in the reports of overlapping selection sets.

A nonterminal is directly left recursiveif it occurs asthe first symbol on the
right hand side of one or more of its productions. If it takes more than one der-

Copyright © 1996, 1999. Thomas W. Christopher 27



TCLLk Parser Generator

4.3.3

ivation step to derive itself first, for example, A =" Bu =" Cvu =" Awvu, then
itisindirectly left recursive, or as we more colorfully say, there is daisy-chain
recursion.

Direct left recursion can be removed as follows:

» Divide up the productions for the nonterminal into the left-recursive and
non-left-recursive.

A=Au; | Au | ... | Auyl| vi | vo | ... | vqy -
« Call theuy u, ... uy, thetail ends of the left recursive rules.

»  Group the non-recursive right hand sides and follow them by an arbitrary
repetition of the tail ends of the recursive rules, thus:

A= (vol val ... [ vp) {ug |l up| ... | unl.
When we apply thisto our expression grammar, we get
e=t { "+ t | "-"t}

TCLLk doesthistransformation itself. Run the grammar through tcllk, and you
get:

>tcllk e-notll1
0 errors and 0 warni ngs

For daisy-chained left recursion, you have to first convert into direct left recur-
sion by replacing nonterminals by their right hand sides, a technique shown be-
low.

Factoring

An obvious problem for an LL (1) parser is anonterminal having several right
hand sides beginning with the same symbol. In our expression grammar, t has
that problem:

f "4 n t
f ll/ll t
f

t
t
t

The solution isto factor the common initial part out:
t =f ("*™ t | "/"t]).
Whichisto say, atisan f followed by one of severd tails.
Since one of the dternativesis empty, we can use brackets:
t =f [ "*™ t | "/"t].

As shown above, TCLLk does its own factoring, so you don’'t haveto. If you
use the -p flag on the command line when trandlating grammar e-notll 1 (Figure
10 on page 26)
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>tcllk -p e-notll1
you can see this resulting grammar:

e =t "e:101".

"e: 101" = "+" t "e:101".
"e: 101" = "-" t "e:101".
"e: 101" =

fo=i.

fo="(em:"

start = e.

t =f "t:102".

"t:102" = "t
"t:102" = "/" t.
"t:102" =

Notice that TCLLk generates nonterminal names of the form

nonterm nal : nunber

Replacing nonterminals by right hand sides

When faced with daisy-chained left recursion or right hand sides with conflicts
but no common initial symbols to factor, we can resort to replacing nontermi-
nalsby their right hand sidesto try to make theleft recursion direct or theinitia
parts of right hands sides equal. We will call replacing nonterminals by their
right hand sides “expanding” the nonterminal.

Consider the following grammar, "c-nll1.grm™:

# c-nll1l

# not LL(1)
start =s .
s =e.

s =i "="&®e
e =e "+" t
e =e"-"t
e =1 .

t = f "*" t
t =f "/"t
t = f
fo=

f =n.
f="("e")"

In addition to the conflicts we have seen already in the definitions of eand t,
there is a conflict between the two definitions of s: a string derived from e can
also beginwith an i.

First, let'sfix eand t:

e =t etail.
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etail = { "+ t | "-" t}
t =f ttail .
ttail =[ "*" t | f"/" t].

Now let’s start working on the production
S = e .

The e can derive astring beginning with an i. We need to rewrite until we have
aproduction for swhose right hand side begins with i so we can factor. Were-
place the e with its one definition, giving

s =t etail.
Now we replace the t by its one definition
s =f ttail etail.

Now we need to replace the f, but it has three definitions. We must replace it
with each, copying the production for each of them

s =i ttail etail.
S =nttail etail.
s ="(" e")" ttail etail.

Now we can factor, yielding

s =1 ("=" e | ttail etail)
S =nttail etail
s ="(" e")" ttail etail

So the resulting grammar is.

# c-111

# LL(1)

start = s .

s =i ("=" e | ttail etail)
s =nttail etail

s ="(" e")" ttail etail
e =t etail.

etail ={ "+" t | "-"t }
t =f ttail .

ttail = "*" t | f "/" t].
f =i .

f =n.

f ="("e™")"

Now you see why we created new nonterminals etail and ttail. We knew from
experience that we were going to copy them in severa productions, and if we
left the braced or bracketed constructsin line, the parser generator would intro-
duce multiple nonterminals with identical definitions.

TCLLk does this transformation itself, yielding:
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e =t "e:101".

e: 101" = "+" t "e:101".
"e: 101" = "-"t "e:101".
"e: 101" =

f =i.

f = "f:103".

"f:103" = n.

f:103" = "(" e ")"

s =i "s:104".

s = "f:103" "t:102" "e:101".
"s:104" = "=" e.

s: 104" = "t:102" "e:101".
start = s.

t =f "t:102".

"t:102" = "*" t.

"t:102" = "/" t.

"t:102" =.

Daisy-chain left recursion removal

The method of expanding nonterminals in productions, replacing them with
their right hand sides, is also used to remove daisy-chain, or indirect, left recur-
sion.

When presented with this grammar:

t

>

>=sOwm~
<X

i no

S
A
B
B
C Z.

TCLLk trandatesit into this grammar:

start = A
A=wx "A 101".
"A 101" zy x "A101".

"A: 101"
or if you prefer:
start = wx {z y x}.

Y ou can check these productions by deriving a moderate-length sentence from
the original grammar and examining the pattern.

Y ou can also derive the replacement grammar yourself by first expanding B in

production A = B x. givingA = Cy x | w x. andthenexpanding C
toget A= Az y x| wx.,andfinally removing the direct Ieft recursion.
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4.3.6

Replacing right hand side by left hand side

If we can replace a nonterminal by all of itsright hand sides, what about going
the other way? Well yes, that can work, aslong aswe don’t try to replace the
definitions of the nonterminal itself. (Wewouldn’t want to replace A= u | v.
withA= A).

In fact, we have been replacing multiple right hand sides using newly created
nonterminals. For example, we replaced

t
t
t

(I T
—h
~~
—

with
t =f [ "*™ t | "/"t].

knowing that the brackets create anew nonterminal. Thetrand ation done by the
parser generator makes this explicit:

Noticethat just asreplacing a nonterminal in a production required substituting
each of itsright hand sides, duplicating the production as necessary, the substi-
tution the other way requires each right hand side be found at the same place in
otherwise identical productions and that al those productions be replaced with
asingle production.

Here' samore tricky use of thistechnique. Suppose we have alanguage where
statements can have any number of statement labels preceding them. The state-
ment labels areidentifiersfollowed by colons, and assignment statements begin
with an identifier:

# ls-nll1l

# not LL(1)

start = | abel ed_st at enent

| abel ed_statenent = | abel statenent
label = { 1 ":" }.

statenent =i "=" e.

The TCLL1 parser generator will find aconflict in label = {id":"}. which it re-
ports as shownin Figure 11.

The problem is that the empty right hand side can be followed by the identifier
at the beginning of the assignment statement. (The reason it’s awarning rather
than an error will be discussed later when talking about the " dangling el se prob-
lem".
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Figure 11

V\r ni ng:
label 5 9 =1 ":" |abel _5 9.
and enpty-deriving production
| abel _5 9 =.
overlap: {i}
O errors and 1 warning

The warning generated for the labeled statement
over | appi ng sel ection sets for

4.3.7

Let’stry rewriting label inlabeled statement to allow usto factor. First, were-
write the definition of label to make the right recursion explicit:

| abel |

| abel =i
And then replaceitin labeled statement:

| abel ed _statenent =i ":" |abel statenent
| abel ed_st atenent = st at enent

Now rewriting statement in labeled _statement = statement . gives
| abel ed_statenent =i "=" e.
allowing us to factor

| abel ed_statenent =i Iabel ed _statenent tail

| abel ed_statenent tail = "=" e .
| abel ed _statenent tall = ":" | abel statenent

If we run this through the parser generator, alas, we find the same warning. We
still have label followed by statement which is the same problem as before.

But now we can apply thetrick of rewriting aright hand side asitsleft hand side.

We know we have not changed the set of strings that labeled statement gener-
ates so that the strings are still described by the singleright hand side label state-
ment. Wereplace label statement with labeled statement in the last production

giving
| abel ed_statenent =i |abeled statenent _tail

| abel ed_statenent tail =" e .
| abel ed_statenent tail

":" | abel ed_st at enent

This definition works.
Look-ahead trees

Unfortunately, TCLLk isnot smart enough to use the transformation described
in section 4.3.6, replacing right hand sides with left hand sides. Instead, it uses
alook-ahead of greater than one symbol. After reading the grammar, the pro-
ductions are:

| abel = | abel 5 9.
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| abel 5 9 =.

label 5 9 =1 ":" label _5 9.

| abel ed_statenent = | abel statenent.
start = | abel ed_stat enent.

statenent =i "=" e.

The nonterminal | abel 5 9 was generated for
label = {1 ":" }.
After TCLLK finishes, the grammar is:

"l abel _5 9:101"
"l abel 5 9:102"
"l abel _5 9:102"
"l abel _5 9:103"

i "label 5 9:102".
"=" "|abel _5 9:103".
":" "label 5 9:101".
BACKUP BACKUP.

| abel ed_statenent = "l abel 5 9:101" statenent.
start = | abel ed_stat enent.
statenent =1 "=" e.

BACKUP isan action symbol that tells the parser to back up one symbol in the
input.

Nonterminal " | abel _5 9: 101" recognizes sequences of |abels of the form
i "rte{ 1 """ } . Nonterminal " | abel _5 9: 101" canbefollowed

by a statement of theformi " =" e.
Production

"l abel 5 9:101" =i "label 5 9:102".

saystofinda{ i ":" } whichcanbefollowedbyi "=" e,firstlook for
ani andthenlookfora"l abel 5 9:102" .Thei couldbethei ini ":"

orthei ini "=" e .
Productions

"l abel 5 9:102" = "=" "|abel 5 9:103".
"l abel 5 _9:102" = ":" "label _5_9:104".

say that to find a"label 5 9:102" first find eithera" =" ora ":".

Finding a"=" look for a"label 5 9:103" next. Having seen a"=", we now
know that wearelooking at astatement of theformi " =" e.Wehavealready
read past thei andthe" =" . Production

"l abel _5_9: 103" = BACKUP BACKUP.

saysto back up two positions, pushing thei " =" back into theinput. Since
there is no other nonterminal to look for, we are done finding a

"l abel 5 9:103" ,a"label 5 9:102" ,anda

"l abel _5 9:101".Westarted lookingfor "1 abel 5 9: 101" inthe
production
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| abel ed_statement = "l abel 5 9:101" statenent.

S0 we expect to find a statement next. So now we are looking for a statement
given by production

statenent =i "=" e

Thisis exactly what we want. We arelooking fori " =" e withthe i "="
back on the input.

Now consider the other production
"l abel _5 9:102" = ":" "label 5 9:101".

It says that having just found ani , look fora": " next and look for a
"l abel 5 9: 101" after that. Thisisanormal right recursive definition of {

i ":" }.Actudly, itisoptimized from these productions:

"label 5 9:102" = ":" "label 5 9:104".
"l abel _5_9:104" = BACKUP BACKUP i ":"
"| abel 5 9:101".

which saysthat we' velooked ahead and discovered wearefindinga { i

} . We back up two symbols, pushingthei ":" back on theinput and then
look for the productionthat represents { 1 ":" } ,i.e
label 5 9 =i ":" label 5 9.

in the origina grammar.

But the two BACKUP actionswould put thei  “: ” back on the stack, and then
thei *:” would match them again. So the two BACKUPs and the two termi-
nals cancel each other out.

Tables of operators

Y ou may be given tables of operatorswith their precedencesand associativities.
Y ou may haveto trandatetheseinto context free syntax. Thisisso easy, TCLLk
won’t help you withiit.

Before looking at the algorithm for converting operator precedence tables into
productions, consider this example. Given the table of operators, Table 1.

Table 1 Precedence table.

Operators | Unaryor | Associativity Precedence
binary

% unary many highest

$ ! binary left

& binary right
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Table 1 Precedence table.

# binary non-associative

A unary one-at-most lowest

the algorithm will give the following grammar:

El =~ E2 .
El = E2 .

E2 = ES # E3 .
E2 = E3 .

E3 = E4 & E3 .
E3 = E4 .

E4 = E4 $ E5 .
E4 = E4 ! E5 .
E4 = ES5 .

ES = % ES5 .
ES = E6 .
E6 = F .

Binary operators associate to the left if the left hand side nonterminal isleft re-
cursive, and associate to theright if the nonterminal isright recursive. The high-
er precedence operator must occur in a subphrase of the lower precedence one.

Hereisthe agorithm for generating productions from a precedence table of bi-
nary operators:

Suppose the grammar specifies

E =EPE.

E=F
with tables giving the precedence and associativity of the operators, P.
Number the precedence levels consecutively, 1, 2, ..., n from lowest to highest.
Create anonterminal, E;, for1<i<n+1.
Create arenaming production

E = Ea.
forali<n.

For each binary operator P, at precedence level i, if P, isleft associative, putin
aproduction

E = EP E, .

If P, isright associative, put in aproduction
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E = E.gP E.

Or if P;isnon-associative (for example, the relational operatorsin Pascal), put
in a production

E = E.a P B

If you end up with two productions
E = E ...

and
E = ... E .

you have generated an ambiguous grammar; left and right associative operators
must not be at the same precedence.

For each unary operator P at precedencelevel i, if several occurrences of P may
occur inarow, put in aproduction

Ei:PEi.

Or, if a most one occurrence of P can occur in front of an operand, put in the
production

E = PE,.
Add productions

E=E .
E. = F .

The dangling-else problem

The dangling-else problem occurs in languages that have optional else clauses
inif statementsand noif statement terminator (such asend if or fi). In nested ifs,
itisnot clear which preceding if an else goes with. Thisambiguity shows up
when we try to construct an LL(K) parser. Consider the syntax:

statenent = if_statenent
| i n :ll e.
if statenent = if e then statenent
| if e then statenment el se statenent
thisobviously will have a conflict. So we try factoring

if _statenment = if e then statenent el se_option.
el se_option = [ else statenent ].

When we pass thisthrough the TCLL1 parser generator, we get these warnings:
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War ni ng: overl apping sel ection sets for
el se_option_6_15 = el se statenent.
and enpty-deriving production
el se_option_6_15 =.
overl ap: {el se}
O errors and 1 warning

Why? First consider this example:

if ethen if ethenif e then i=e else i=e el se
i =e

We have three if’ s and two else’s. Which else goes with which if? When the
LL (1) recognizer has just finished processing the first i=e, there will be three
else_option’son the prediction shack. Two of them must be replaced with else
statement; one, with the empty string. Which?

Observe that a statement can be followed by an else_optionand anif_statement
can end in an else_option. The else_option at the end of an if_statement can

therefore be followed by an else, which means that it is unclear how to choose
between aright hand side beginning with an else and the empty right hand side.

Unfortunately, there’ s no way to get rid of this problem. (Wéell, if you are the
language designer, you could redesign the language, but if you are only the
compiler writer, you haveto take the language as given.) So here’ swhat we do:
we cheat. We want the parser to associate the else with the innermost if. This
will betheif statement that placed the else_option on top of the prediction stack.
So we let the else_option on top of the prediction stack handle the else. That
means we will choose the right hand side that has the elseinitsfirst set rather
than the right hand side that is empty and only has the elsein its follow set.

Why don’'t we just look for if and else and treat them specially? Actually, the
problem occurs in more language constructs than if statements. In general we
can call it the“dangling tail” problem. To handle the general dangling tail prob-
lem, both the TCLL 1 and TCLLKk parser generators use thisrule:

Only use a symbol from the follow set to choose an empty-deriving right
hand sideif it does not appear in the first set of any right hand side.

The parser generator fillsatable, sel, that maps nonterminals and terminalsinto
right hand sides. For nonterminal A and terminal t, sel[At] istheright hand side
to replace A with if tis next in the input.

The parser generator works in two passes over a nontermina’s productions:

1 For each production A = u. and every terminal t in First(u), sel[At] is
assigned right hand side u. If TCLLk findsthat sel[A ,t] aready hasbeen
assigned a different right hand side, it reports an error.

2 Then TCLLk checksto seeif thereisaproduction for A with an empty-
deriving right hand side, i.e., A = w. where w is either empty or is com-
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posed of action symbols and of nonterminals each of which derivesthe
empty string. If thereisno such right hand side, TCLLk isdonewiththis
nonterminal. If there are two or more such productions, the grammar is
ambiguous—thereismore than one way to derive the empty string from
A. If thereis precisely one such production, A= w., then for al symbols
tin Follow(A),

* if sel[At] dready has aright hand side assigned, issue a warning,
» otherwise assign sel[A,t] theright hand side w.

We havethe TCLL 1 parser generator give awarning when first sets and follow
sets give conflicting choices for anonterminal since it may not be adangling

else problem. Indeed, in the labeled statement example, it wasn't. If we' d used
the parser that was generated with this warning, it would never have been able
to parse an assignment statement: it would assume an identifier at the beginning

of a statement had to be alabel and it would report an error when it saw an "=
rather thana":".

What about TCLLK? It handles dangling tails without even giving a warning.
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Chapter 5 Parsing with action symbols

5.1

We have talked about grammars being used to derive sentences from the start
symbol by replacing nonterminal symbols by their right hand sides, but thisis
just the reverse of what we need for parsing; we need to reduce the sentence to
the start symbol by repeatedly replacing right hand sides by their left hand sides.
As each reduction is made, a semantic value is computed for the left hand side
symbol from the semantic values of the right hand sides. The procedures that
compute these values are called semantics routines or action routines. In addi-
tion to computing semantic values, the semantics routines can also access
shared datastructures and writetofiles. Intheory, “the meaning of the program”
isthe semantic value assigned to the start symbol. In practice it can be the con-
tents of adata structure or the contents of afile.

Reductions

If we start with a sentence and just ook through the right hand side for sub-
strings we can reduce, we may go down blind alleys and never reduce it to the
start symbol. Using our expression grammar, we could try the following reduc-
tion sequence on i*i:

* F X X X F* X

i
i
i
i
f
t
e

OB OROR ORI

whereupon we cannot make any further reductions.

There are some parsing algorithms, called bottom-up parsing algorithms, that

find the correct substring to reduce each step. These parsing algorithms can be
used directly. Unfortunately, LL (1) parsing is top-down, so we must do some-
thing to make it give us the reduction sequence.

Here' swhat we do: We invent an extension of the language in which each pro-
duction ends with a distinct terminal symbol, a marker, trandate the sentence
into the equivalent marked sentence in this extended language, and use the
marked sentence to compute the semantic associationsfor the nonterminals. We
will show that

* we can use the markers to perform reductions in the correct order.
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e we can translate a sentence without markers into a sentence with markers
using aversion of the LL (1) recognition agorithm.

* we can combine these two operations so that no intermediate sentence is
ever generated.

First, let’ s consider how wewould use markers for reductions. We add markers
to our expression grammar to give an marker-augmented grammar as shownin

Table 2.

Table 2 Productionsin grammar and grammar with markers.
Original grammar Marked grammar

start = e. start = e P1.

e =e"+" t. e =e"+" t P2

e =e"-" 1. e =e"-" 1t P3.

e =1t . e =t P4

t = f "*" t. t =f "*" t P5.

t =f "/" t. t =f "/" t P6.

t = f t =f P7

f =i f =1 P8.

f="("e")" f="("e")" P9

Notice that each production in the original grammar has a corresponding pro-
ductioninthe marked grammar. The only difference between these productions
isthat the marked production has amarker at the end of its right hand side. All
the markers are distinct.

Assuming i representsinteger, here' s asentence in the expression language and
itstranslation:

30/ 5* 2+ 6
30 P8/ 5 P8 * 2 P8 P7T P5S P6 P4 + 6 P8 P7 P2 P1

The corresponding sentences can be derived by leftmost derivations using the
corresponding productions in each derivation step, as shown in Table 3.

Table 3 Parallel derivation of sentence and sentence with markers.

start start

e ePl

e+t e+tP2P1

t+t tP4A+tP2P1
flt+t f/ItP6PA+tP2P1
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Table 3 Parallel derivation of sentence and sentence with markers.

30/t+t 30P8/tP6PA+tP2P1

0/f*t+t 30P8/f*tPSP6P4+tP2P1

30/5*t+t 30P8/5P8* tPSP6P4+tP2P1
30/5*f+t |30P8/5P8* fP7P5SP6P4+1tP2P1
30/5*2+t | 30P8/5P8* 2P8P7P5P6P4+tP2P1
30/5*2+f |30P8/5P8* 2P8P7TP5SP6P4+fP7P2P1
30/5*2+6 | 30P8/5P8* 2P8P7P5P6 P4 +6P8P7P2P1

When reducing the trand ated sentence, we use the markers as suffix Polish op-
erators. Each marker hasanumber of symbolsprecedingit initsright hand side,
which is the number of operands it takes as a suffix Polish operator. The num-
bers for the markers are shown below:

marker P1 P2 | P3| P4 | P5|P6| P7| P8 | P9
number of 1 3 3 1 3 3 1 1 3
operands

Now we will show how to reduce a marked sentence to the start symbol. The
input consists of a string of tokens and markers. The algorithm uses a stack.

Figure12  Algorithmfor Reduction using markers.

ALGORITHM FOR REDUCTION USING MARKERS

Initially set the stack empty.

Read through the marked sentence one symbol at atime
if the symbol is atoken, push it on the stack
otherwise the symbol is an marker,

look up the production it occursin

remove the marker’s "arity" number of symbols from the stack
(these correspond to the symbols ahead of the marker on the
right hand side)

push the left hand side symbol on the stack
At the end, the start symbol will be on the stack.

Copyright © 1996, 1999. Thomas W. Christopher 43



TCLLk Parser Generator

The markers coming at the ends of right hand sides tell uswhen to make are-
duction and which production to use. A reduction sequence using the algorithms
shown in Table 4 on page 44.

Table 4 Reduction sequence of expression with markers.

stack i nput
30 PB/ 5 P8 * 2 P8 P7 P5 P6 P4
+ 6 P8 P7 P2 P1

30 P8 / 5 P8 * 2 PB P7T P5 P6 P4 + 6
P8 P7 P2 P1

f /| 5P8* 2 P8 P7 P5 P6 P4 + 6 P8
P7 P2 P1

f/ 5P8 * 2 P8 P7 P5 P6 P4 + 6 P8 P7
P2 P1

f /5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8 P7
P2 P1

f I f * 2 P8 P7T P5 P6 P4 + 6 P8 P7 P2 P1

flrf=* 2 P8 P7T P5 P6 P4 + 6 P8 P7 P2 P1

frf*2 P8 P7 P5 P6 P4 + 6 P8 P7 P2 P1

frf*f P7 P5 P6 P4 + 6 P8 P7 P2 P1

frf*t P5 P6 P4 + 6 P8 P7 P2 P1

frlt P6 P4 + 6 P8 P7 P2 P1

t P4 + 6 P8 P7 P2 P1

e + 6 P8 P7 P2 P1

e + 6 P8 P7 P2 P1

e + 6 P8 P7 P2 P1

e + f P7 P2 P1

e +t P2 P1

e P1

start

5.2 Semantic values

Every symbol inthe sentential form hasameaning associated withit, asemantic
value. The semantic values of symbols are also called collections of attributes.
Terminal symbolswill have semantic values assigned to them by the scanner.
Terminal symbolswith their associated values are called tokens. In the TCLLk
system, atoken isarecord containing

» the syntactic type (the terminal symbol)— used by the parser to recognize
theinput.

» thebody (the string of charactersthat comprise the token)—used by the se-
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mantics routines.
* theline number on which the token occurred.

* the column number (actually the character position) of the leftmost charac-
ter of the token; the line and column are used to report the position of an er-
ror.

Itisfairly clear how to use the reduction algorithm to compute semantic values
of symbols. Each production, and hence each marker, has a procedure, a seman-
tics routine, associated with it. What is kept on the stack are semantic values.
When a marker is encountered, the semantic values of the right hand side sym-
bols are removed from the stack and passed to the semantics routine. The rou-
tine computes the semantic value of the left hand side symbol and that value is
pushed back on the stack.

A semantic value of a nonterminal expresses the meaning of the phrase it de-
rived. A semantic value may be:

* Thenumeric value of the subexpression the nonterminal represents.
* Anoperator tree or an abstract syntax tree representing the phrase.

» A trandation of the phrase and a description of its result’ s data type.
Inserting markers into sentences

So how do we insert markers into a sentence? We use aversion of our LL(1)
recognition algorithm. The differences from the original recognition algorithm
areasfollows:

* Thealgorithm uses a grammar containing markers.

* Asit matchestokens, it writes them ouit.

* When it finds a marker on the top of the prediction stack, it writesit out.
The LL(1) trandation algorithm with action symbolsis shown in Figure 13.

Of course agrammar hasto be put in LL(1) form before the parser can use it.
Do markers cause any problems? Not really. All they requireis:

* Markersare moved around like any other symbol.

*  When calculating First and Follow sets, markersareinvisible; they aretreat-
ed like nonterminals that derive only the empty string.

If we transform the marked expression grammar, we can get the following
LL (1) form:

Table 5 Expression grammar with markersin LL(1) form.

start = e P1.
e =t P4 etail.
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Table 5 Expression grammar with markersin LL(1) form.

etail = "+" t P2
etail.

etail
etail.

etail =.
t =f ttail
ttail ="*" t P5.
ttail P6.
ttail
f =1 P8.
f="("e™")" P.
Figure13  LL(1) Algorithmto insert markers

"o" ot P3

I n
g =
~+

LL(1) ALGORITHM TO TRANSLATE
INTO A MARKED SENTENCE

Initially, place the start symbol and the EQI (end of input) symbol on
the prediction stack with the start symbol on top. Put the EOI sym-
bol at the end of theinput. Read thefirst input symbol into the cur-
rent token.

Repeat
pop the top symbol off the prediction stack.
if the top symbol is amarker, write it out.

otherwiseif the top symbol isaterminal, compareit to the current
token.

If they match, write the current token out and read the next to-
ken from the input into the current token.

If they don’t match, an error has been discovered in the input.
Execute error recovery code.

otherwiseif thetop symbol isanonterminal, choose oneof itsright
hand sidesand push it on the predi ction stack, |eftmost symbol
on top. Choosethe right hand side by looking at the next input
symbol and deciding which RHS will allow parsing to contin-
ue.

until the EOI symbol is matched.

5.4 Parsing

In practical parsers, we do not first insert markers into a sentence and then pass
it through a reduction algorithm. We combine both parts in one agorithm.
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In the following LL (1) parsing algorithm, we use the name action symbols for
markers. When the parser sees an action symboal, it calls an action routine,
sometimes called a semantics routine. Is there a difference between a marker
and an action symbol? Well, yes. All markers are action symbols, but we can
put in action symbols for other purposes than marking the end of aright hand
side, e.g. putting the scanner into a different mode.

Action symbols

In TCLLK, action symbols arerequired to be identifiers; they are used as names
of the procedures used for action routines. Action symbols may be declared by
following them with an exclamation point, e.g.

f="("e")" P!,

If the action symbol has been declared in one place with an exclamation point,
it need not be followed by an exclamation point anywhere else.

If you don’t care to use the exclamation point, you can declare action symbols
with the following declaration:

actions: a; & ... a, .
where each g; is an action symbol.

The LL(1) parsing algorithm
The LL(1) parsing algorithm with action symbolsis shown in Figure 14.

A bit of explanation is necessary about marking the current token present or ab-
sent. In earlier algorithms we read the first token at the beginning and then read
inanew token as soon as we had recognized the previous. Thisisquiteall right
for some compilers, but it is particularly a problem for interactive programs.
The system won'’t respond to one command until it has seen the first token of
the next. Here we don'’t try reading another token until we are going to look at
it. We can perform any number of actions after recognizing a token before re-
guesting the next, allowing the program to respond immediately after the last
token of the command has been read. Both the TCLL1 and TCLLKk usethisal-
gorithm.

Building parsers
Hereis an approach for building parsers:

First, design agrammar for the language which has meaningful phrases. It must
be clear to you what action you wish to take at the end of each phrase and what
the semantic value of each symbol in the grammar is. Each token is a semantic
value (the value of the terminal symbol). Each nonterminal has an associated
datatype to contain its semantic value or attributes.

Put an action symbol at the end of the right hand side of each production. Each
production has some rule for constructing its left hand side’ s semantic value
from the semantic values of the right hand side symbols (in addition to writing
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Figure14  LL(1) parsing algorithm.
LL(1) PARSING ALGORITHM

Initially, place the start symbol and the EOI (end of input) symbol on the prediction stack
with the start symbol on top. Put EOI at the end of the input. Make the current token
empty. Make the semantics stack empty.

Repeat
pop the top symbol off the prediction stack.
whileit isan action symbol, cal its action routine and pop the next top symbol off the

prediction stack. The action routine may pop zero or more values off the semantics
stack and may push one or zero values back on it.

if the current token is empty, call the scanner to read the next input token into the cur-
rent token.

if thetop symbol from the prediction stack isaterminal, compareit to the current token.

If they match, push the current token onto the semantics stack. Make the current to-
ken empty.

If they don’t match, an error has been discovered in the input. Execute some error
recovery code.

otherwiseif the top symbol from the prediction stack isanonterminal, then choose one
of itsright hand sides and push it on the prediction stack, rightmost symbol on bot-
tom. Choose the right hand side by looking at the next input symbol and deciding
which right hand side will allow parsing to continue.

until the EOI symbol is matched.

out trandated code and changing some global variables). The action symbol is
the name of the procedureto call when that right hand side has been recognized.
It will pull off the semantics stack one value for each symbol on the right hand
side and will push back the value of the left hand side.

Several productions may have the same action symbol if the number of ele-
ments on the right hand side are the same and the actions are similar. For exam-
ple, each binary operator could have its own action routine, or all binary
operators could share the same routine that |ooks at the operator token to decide
what to do.

Y ou may omit an action symbol for arenaming production, a production that
has exactly one symbol on theright hand side and no action except to push back
the value it pops. Y ou may introduce action symbols at other places than the
ends of right hand sides if you feel the need; not all action symbols represent
markers.

Give the grammar to TCLLk. When TCLLk transforms the grammar to LL (1)
form (perhaps with look-aheads and BA CKUP actions), it will move around ac-
tion symbols the same as any other symbol. When checking First and Follow
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sets, it will treat action symbols asif they are nonterminals that derive only the
empty string. Alas, if TCLLk can’t build tables for the grammar, you will have
to try some transformations yourself. Y ou might not be successful. Not all lan-
guages are LL (k).

Write the action routines. An action routinefor amarker action symbol will pull
values off the semantic stack for the right hand side symbols of a production,
compute the semantic value of the left hand side, and push it back. However, an
action routine that does not correspond to a marker is not required to pop any
value off the semantics stack or push avalue back. Y ou may also decide that
some nonterminals have no semantic value and hence do not need to have aval-
ue on the semantics stack. Feel free not to push avalue for such a symbol, but
beawarethat it will complicate keeping track of the semantics stack’ s depth, as
we will discuss later.

Example of evaluating arithmetic expressions

Let’ sdesign action routinesto eval uate arithmetic expressions using our expres-
sion grammar. Here' s a sentence in the language:

30/5*2+6

Suppose we parse it using the LL (1) grammar with markers we constructed be-
fore:

Table 6 Expression grammar with markers at ends of phrases.

start = e P1. ttail ="*" t P5.
e =t P4 etail. ttail ="/" t P6.
etail ="+" t P2 etail. ttail = P7 .
etail ="-"t P3 etail. f =1 P8.

etail =. f="("e™")" P9.
t =f ttail

In this case the terminal symbol i represents an integer token. Here' s what the
action routines are expected to do:

P1 pop the numeric value on top of the semantics stack, writeit out, and ter-
minate execution.

P2 pop three values from the semantics stack, add the first and third, and
push the sum.

P3 pop three valuesfrom the semantics stack in order z, y, x; push the value
X-z back on the stack.

P4 no operation.

P5 pop three valuesfrom the semantics stack in order z, y, x; push the value
x*z back on the stack.
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P6 pop three valuesfrom the semantics stack in order z, y, x; push the value
x/z back on the stack.

P7 no operation.

P8 pop the token off the semantics stack, convert its body from a string to
an integer, and push the value back.

P9 pop three values off the semantics stack and push the middle val ue back.

Here' satrace of theinput and the semantics stack while parsing the sentence
30/5* 2+ 6. Tokens are indicated as type: value.

Table 7 Trace of a parse.

Actic_)n from | Semantics stack Prediction stack | Input
previous
start EOI | 30/5*2+6 EOI
e P1LEOI | 30/5*2+6 EQI
t P4 etail P1 EOI | 30/5*2+6 EQI
f ttaill P4 etail P1 EOI | 30/5*2+6 EOI
i P8 ttail P4 etail P1 EQOI | 30/5*2+6 EOI
match i:30 P8 ttail P4 etail P1 EQI | /5*2+6 EOI
P8 30 ttaill P4 etail P1 EQI | /5*2+6 EQOI
30 "[" t P6.P4 etail P1 EQI | /5*2+6 EQI
match 30/:/ t P6 P4 etail P1 EOI | 5*2+6 EOI
30/:/ f ttaill P6 P4 etail P1 EQI | 5*2+6 EOI
30/:/ i P8ttail P6 P4 etaill P1 EQI | 5*2+6 EOI
match 30/:/i:5 P8 ttail P6 P4 etail P1 EQI | *2+6 EOI
P8 30/:/5 ttaill P6 P4 etail P1 EOI | *2+6 EOI
30/:/5 "*" t P5 P6 P4 etail P1 EOI | *2+6 EOI
match 30/:/5** t PS5 P6 P4 etail P1 EQI | 2+6 EOI
30/:/5** f ttaill PS5 P6 P4 etail P1 EOI | 2+6 EOI
30/:/5** i P8 ttail PS5 P6 P4 etail P1LEOI | 2+6 EOI
match 30/:/5**1:2 P8 ttail PS5 P6 P4 etail P1 EOI | +6 EQI
P8 30/:/5*%* 2 ttail P5 P6 P4 etail PL EOI | +6 EOI
30/:/5*%* 2 P7 P5 P6 P4 etail P1 EOI | +6 EOI
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Table 7 Trace of a parse.

P7 30/:/5*:* 2 P5 P6 P4 etail PLEOQI | +6 EQI
P5 30/:/10 P6 P4 etail P1LEOQI | +6 EOI
P6 3 P4 etaill P1 EQOI | +6 EOI
P4 3 etail P1 EOI | +6 EOI
3 "+" t P2 etall PLEOQI | +6 EOI
match 3++ t P2 etail P1 EQI | 6 EOI
3+:+ f ttall P2 etail P1 EOI | 6 EQI
3++ i P8 ttail P2 etail P1 EOI | 6 EOI
match 3+:+i6 P8 ttail P2 etail P1 EQI | EOI
P8 3++6 ttail P2 etail PLEQI | EOI
3++6 P7 P2 etail PLEOQI | EOI
P7 3++6 P2 etail P1 EQI | EOI
P2 9 etail P1 EQI | EOI
9 P1EQI | EOI
P1 EOI | EQI
match

5.5 Accounting for semantics stack depth1

As mentioned, an action routine can push either one or zero values on the se-
mantics stack. Asarule, they would leave one value to represent the left hand
side symbol. Some nonterminals, however, have no semantic information asso-
ciated with them, so there is no reason to keep a value on the stack for them. It
isastrong temptation not to needlessly push and pop null values, and we are
sure to givein to this temptation, but it makes it harder to get our parser right.
We will probably find one of our biggest problems with this parsing method is
that we mangl e the semantics stack by popping or pushing the wrong number of
items.

L This section was des gned for TCLL1, where you would transform the grammar into
LL(2) form by hand and then have to maintainitinitsLL(1) form. Some of thisis probably
useful for TCLLK, but it needs rewriting. Feel free to ignore this section.
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The symptom that you have mangled the semantics stack is semantics routines
crashing, complaining that they have the wrong types of operands or that they
are trying to pop values off an empty semantics stack.

Recall that the paradigmatic way to use action symbols involves four things:

1. Write an original grammar in aclear, meaningful form without using
any grouping, optional, or repetitive constructs and with action symbols
only at the ends of right hand sides.

2. Designtheaction routinesto remove one thing from the semantics stack
for each symbol ahead of them on the right hand side and will push one
value back.

3. Then, create atransformed grammar in LL (1) form, moving the action
symbols around like any other symbol. Thisassumes, of course, you are
transforming it by hand and using TCLL1. You won't be doing this,
probably, if you are using TCL LK.

4. Represent every termina and nonterminal symbol in the original gram-
mar by exactly one value on the semantics stack.

If we decide not to push values for some nonterminals, you will have to keep
track of which nonterminals have values and which do not. It will no longer be
immediately obvious by looking at aright hand side just how many values an
action symbol’ s procedure is to pop or push. If you put action symbolsin front
of or inthe middle of productions, it makes it harder to figure out what’s going
on. And using braces, brackets, parentheses, and vertical bars causes more con-
fusion.

The problem is made all the worse if you transform the grammar into LL (1)
form by hand. When you need to make a change in the grammar (and you will)
youwill makethe changedirectly tothe LL (1) formand it will not beat all clear
what effect it will have on the semantics stack. Inthe LL(1) form, newly intro-
duced nonterminals will not necessarily leave either zero or one values on the
stack.

What we will need isaway to account for stack depth. Associate anumber with
each symbol, right hand side, aternative, and parenthesized, optional, or repet-
itive phrase. These numbers represent the effect of the construct on the seman-
tics stack depth.The rules are shown in Figure 15 on page 53.

To use aversion of our expression grammar:

t e P1!.
"+t P20 | "-"t P31}
"rtot PSE|"IM t P6!].

| "(" e ™)" P9!.

-~ D W0
I n oL
=

—_——h —+ —~+
||

_U
9|—|
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Figure15  Rulesfor accounting for semantic stack depth.

1

Every symbol will change the depth of the semantics stack by afixed
amount.

* All terminas count as +1. The parser will push each token
matched on the stack.

» Each nonterminal will have a fixed number of symbolsit will
leave on or remove from the stack. Nonterminals in the original
grammar will change the stack depth by +1 or +0. (Nonterminals
introduced during the translation to LL (1) form may even have a
negative net depth.)

* Anaction symbol has an effect equal to the number of symbols
pushed minusthe number popped. Since the number pushed istyp-
ically zero or one and the number popped is greater than or equal
to zero, an action symbol can have any number less than or equal
to one.

A string of symbols has a number computed by adding up all its com-
ponents.

The number associated with a nonterminal must be the same as the
number computed for each of its right hand sides.

Each alternative (separated by vertica bars, |) must add up to the same
value.

5 The contents of brackets, [...], must add up to zero.
6 The contents of braces, {...}, must add up to zero.
We can determine the numbers associated with the symbols as shown in Table
8.
Table 8 Semantics stack depth changes by symbols.
u+u,u_u,u*u,u/u’ 1 thwa” areta,mlnals
I , n (ll ll)ll
start 0
etf 1 | they are nonterminals from the original

grammar

P2, P3,P5,P6 | -2 | they handle binary expressions, popping

three and pushing one

P1

-1 | it popsan expression’svalue and pushes
nothing

P8

0 | it popstheinteger token and pushes its
numeric value
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Table 8 Semantics stack depth changes by symbols.

P9 -2 | it pops three values and pushes back the
middle one

We can now compute the lengths of the right hand sides to make sure the rules
aren’t violated and the lengths of theleft hand sides match. A rough trace of the
calculations we may need to go through is shown in Table 9.

Table 9 Testing semantics stack depth changes.

syntax calculation number of
the rule be-
ing used or
checked,
from Figure
15

start = e P1!. 0=1+-1 3

"+t P2! 1+1+-2=0 2

"-" ot P3! 1+1+-2=0 2

"+t P26 "-" t P3! 0=0 4

{ "+t P2l | "-" t P3!} 0 6

e=t { "+ t P2l | "-" t P3} 1=1+0 3

"xtot PS5 1+1+-2=0 2

/"t P6! 1+1+-2=0 2

"xtot PS5 "/" t P6! 0=0 4

[ "*" t P5! | "/" t P6!] 0 5

t =f [ "* t P5! | "/" t P6!]. |1=1+0 3

i P8! 1+0=1 2

(" e ")" PO, 1+1+1+-2=1 2

i P8I | "(" e ™))" P9I 1=1 4

f =i P8 | "(" e™")" P9I 1=1 3
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Chapter 6 Panic mode error recovery

The parser discoversan error initsinput when the next input symbol either does
not match the terminal symbol on top of the prediction stack or it does not sel ect
aright hand side for the nonterminal on top of the stack. There are no rulesto
tell the parser what to do next. What should it do?

First, of course, the parser should give an error message. The easiest error mes-
sageissmply:

unexpected token XXXX at lineYYYY, column ZZZZ

Thenwhat? Just stopping isn’t nice. Users appreciate the compiler trying tofind
several errorswith each attempted compile. The compiler should attempt to re-
cover from the error and continue processing the program.

There are two problems in attempting to continue:
* The parser must get past the token that caused the syntactic error.

*  The semantics routines must not become so confused that they either crash
or flood the user with error messages. This requires that the semantics stack
be set to an appropriate depth and that the contents of the stack not cause
errors in the action routines.

Fortunately, both are easy to accomplish with LL parsing.

A simple error recovery technique for LL parsersis called panic mode. When
the parser hasdetected and reported an error, it goesinto panic mode and throws
away part of the input and part of the prediction stack until it has found atoken
in the input and a symbol in the prediction stack that allow parsing to continue,
then it returns to normal mode and continues parsing.

How does it choose an input symbol to restart at, and how does it decide how
much of the stack to throw away? The answers to the two questions are rel ated.

The parser will read ahead to one of aset of symbolsthat delimit major sections
of the program. These symbols are called fiducial symbols, symbols the parser
can trust. For many programming languages, the fiducial symbolsinclude™;",

"then", "else", and "end", symbolsthat end or separate statements. If an error is
detected within astatement, the parser will throw away therest of the statement

and try to resume parsing with the next.
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The parser will not, however, accept just any fiducial. The fiducial must be pre-
dicted. The parser will throw away input symbols up to afiducia and then ook
down the prediction stack. If it finds the fiducial symbol on the stack, or if it
finds a nonterminal symbol that derives that fiducial symbol first in astring,
then the parser will remove the symbols on the prediction stack down to the fi-
ducial or nonterminal and will then resume parsing.

If thefiducial isnot predicted, of course, the parser throwsit away and continues
looking. EQI isafiducial, and it is at the bottom of the stack, so the parser can
at least resynchronize by throwing away al the rest of the program.

EQI isthe only fiducial chosen by the parser generator. Y ou must specify the
others yourself with the fiducials declaration:

fiducial: f; f5...f,,.

Notice that the declaration uses a colon rather than an equal sign, the fiducials
are listed without commas and the declaration concludes with a period.

“But,” you may ask, “if the parser just throws away part of the prediction stack,
won't the semantics stack will be mangled when the parsing resumes. What
does the parser do about that?’

The TCLLk parser triesto repair errors. After throwing away part of the input,
it does not just throw away the top part of the prediction stack, but instead gen-
erates areplacement string of tokens for the input it has thrown away. Recall
that the parser works by generating aprogram atop theinput program, matching
them. It istrivia to generate the replacement tokens. Instead of throwing away
symbols from the prediction stack, it does the following with each top symbol
of the prediction stack down to the symbol that predicted the fiducial:

» If thetop symbol isaterminal, the parser generates an error token and push-
esit onto the semantics stack. An error token can be recognized by the ac-
tion routines. It warns the action routines that the token did not come from
the user. The routines should not try to use the token nor give any further
error messages.

» If thetop symbol isan action symbol, the parser callsits action routine. The
action routine will adjust the semantics stack properly. Most action routines
will start by removing the correct number of valuesfrom the semantics stack
and checking if there were any error tokens among them. If the action rou-
tine finds an error token, it will typically push the correct number of error
tokens back on the stack (zero or one) and return immediately.

* If thetop symbol isanonterminal, the parser replacesit with one of itsright
hand sides. The parser chooses the right hand side that will generate a short-
est possiblestring of terminals. If there are several such right hand sides, the
parser generator chooses arbitrarily which one will be used.
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Incorporating the parsers into compilers in Icon

Incorporating the parsers
Into compilers in Icon

Hereiswhat you need to do to build a compiler in the Icon programming lan-
guage using this system:

create agrammar for the language you wish to compile, put in action sym-
bolsand runit through TCL Lk to get tablesfor your parser. If your grammar
is called yourlang.grm, the tables will be given the name yourlang.llk.

Writeamain programtoinitializethe compiler and call the parser. Actually,
you will just edit an old main program to adapt it. We'll see one later that
we can start with.

Write ascanner for the language. Again, we will just adapt an already writ-
ten scanner. | (TC) usually start with one written for Oberon-2. We'll seeit
later and see how it works. (Other compiler-writing systems provide scanner
generators, but scanners are so trivial, it doesn’'t seem worth while.)

Write action routines. Most of these need to be written specially for each
compiler, but there is some standard boilerplate that they share.

Compile our files together and link with readllk, parsellk, semstk, and rpt-
perr from the TCLLK run time library and with files xcode, options, path-
find, escape, and ebcdic from the Icon programming library.

The call-structure of the compiler is as follows:

Our main program calls

* readLLk infilereadllkicnto read in the parse tables from afile and
produce an internal form of the tablesfor the parser to use.

* jnitSemanticsStack in file semstk.icn to initialize the semantics stack
for the action routines.

* initScanner, which we provideto initialize the scanner. It is used main-
ly to open the user’ sinput file. We can leavethisroutine out if we don't
need it.

 parseL Lk infileparsdlk.icn to read and parse the input program. Pro-
cedure parseL Lk calls

» scan, which we provide, to return it the next token of theinput each

Copyright © 1996, 1999. Thomas W. Christopher 57



TCLLk Parser Generator

7.1

timeitiscalled. When theinput is finished, scan will return an EOI
token for each call.

* outToken infile semstk.icn to put atoken it has matched onto the
semantics stack.

* outError infile semstk.icn to push an error token on the semantics
stack during panic mode error recovery.

* reportParseError infilerptperr.icnto report the parser has en-
countered an unexpected token in the input.

* outAction in file semstk.icn to call an action routine, which you
supply.

e Your action routine may cal

* popSem in file semstk.icn to pop a number of values off the se-
mantics stack and return themin alist. The leftmost valuein the
list correspondsto the leftmost symbol in theright hand sidethat
contains the action symbol, and is the value that was furthest
down the semantics stack.

* pushSem in file semstk.icn to push the semantics value of the
left hand side symbol onto the semantics stack.

» anyError infile semstk.icn to look through alist of values and
succeed returning any of those values that is an error token, or
fail if there are no error tokens present.

* isError infile semstk.icn to check whether aparticular semantic
value is an error token.

Interface to readllk.icn

The TCLLk parser generator creates afile containing LL (1) parse tables for a
grammar. This parse table must be read in before the parser can use it. Module
readLLKk.icn provides the routine, readLLKk, to read in a parse table. Routine
readLLKk returns the parse table contained in arecord of type LLk.

record LLK(...)

We don’'t need to know the fields of this record to use the parser. Procedure
readLLKk returns arecord of thistype; procedure parsel Lk takesit as a parame-
ter.

procedurereadlL Lk(fileName)

parameter: fileName—astring, the name of the file containing the output of the
TCLLK parser generator.

returns a record of type LLk containing parse tables
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failsif it can’'t open file fileName

Procedure readL Lk takes the name of the parse tablefile asastring. (TCLLk
createsthe filewith the extension ".LLK" so unless you’ ve renamed it, you will
pass afile namewith that extension.) If it successfully readsthetables, readL Lk
will return arecord of type LLk containing an internal form of the tables. If it
can’'t openthefile, readL Lk will fail. Unfortunately, if thefileismalformed, the
Icon library routine xdecode will fail.

Interface to parsellk.icn

Module parsellk.icn contains the parser and the record declaration for tokens,
the record Token. The scanner returns a token to the parser for each input sym-
bol. Tokens are pushed on the semantics stack as they are recogni zed.

record Token(type,body,line,column)
fields:
1 type—acharacter string, theidentifier or string used in the grammar

to represent the terminal symbol.

2 body—the character string that the scanner found in the input. For
keywords and most punctuation, the bodieswill usually be the same
asthetype. For identifiers, the body will be the name of the identi-
fier. For congtants, the type will indicate the type of the constant and
the body will have the character string the user wrote.

3 line—aninteger, the line number where the token was found.

4 column—an integer, the character position of the token in the line
(tabs are treated as single characters).

If we are alowing "includes' you may want to add another field to tell which
file the token was found in.

procedure parselL Lk(L LK)
parameter: LLk—arecord of type LLk
returns nothing

Procedure parsel Lk performs an entire parse up to the end of input. It must be
given an LLK record containing the parse tables. (See module readLLk.icn for a
further discussion of record LLk and procedure readLLk to read in the tables.)

Interface to semstk.icn

Module semstk.icn provides procedures to maintain the semantics stack. The
parser uses three of the routines; we use the rest. This module provides the def-
inition of record Error Token, which has exactly the samefields as Token, but is
used to represent erroneous phrases.

record ErrorToken(type,body,line,column)
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The parser inserts error tokens during panic mode error recovery. Our action
routines should check for error tokens before taking any action. Once either the
parser or an action routine has reported an error, error tokens should be pushed
on the semantics stack to warn other action routines not to give another error
message and not to try to make sense of the input.

procedur e initSemanticsStack()
called by our main program
parameters: none
returns nothing

This procedure should be called by the main program before starting parsing.
Asits name says, it initializes the semantics stack.

procedure outToken(tok)

called by the parser

parameter: tok—atoken

returns nothing

The parser calls procedure outToken to push atoken on the semantics stack.
procedure outAction(a)

called by the parser

parameter: a—a string, an action symbol, the name of an action routine.

returns nothing

The parser calls procedure outAction to call an action routine. The parser passes
outAction the string name of the routine to call.

procedure outError(t,l,c)
called by the parser
parameters.
t—astring, the name of aterminal symbol
|—an integer, aline number
c—an integer, aposition on the line

returns nothing
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The parser calls procedure outError to push an error token on the stack. The er-
ror token will have the type and body t, line | and column c.

procedure popSem(n)
called by an action routine
parameter: n—an integer, the number of valuesto pop from the semantics stack
returns alist containing the values popped, topmost at the right

We call procedure popSemto remove the top n values from the semantics stack
and returnthemto usin alist. Thetop element will betherightmost valuein the
list. Say we call thisfrom an action routine A and the grammar has a production:

L=R;R,... Ry Al
where each symbol R; has a value V; on the semantics stack, then
popSem(k)
will yield alist
V1, Vo oo Vi

procedure pushSem(s)

called by an action routine

parameter: s—a vaue to push on the semantics stack

returns nothing

We call procedure pushSem to push a value on the semantics stack.
procedureisError(v)

called by an action routine

parameter: v—avalue, presumably from the semantics stack

returns: an undefined value if v is an ErrorToken record

failsif v is not an error token

Procedure isError will succeed if visan ErrorToken record and will fail other-
wise.

procedure anyError (V)
called by an action routine

parameter: V—alist of values, presumably from the semantics stack
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returns. an ErrorToken record, v, found inthelist V if thereis any
failsif V does not contain any error tokens

Procedure anyError looksthroughlist V to seeif it containsany error tokens. I
V does, then anyError will succeed returning one of the error tokensin V. If
there are no error tokens, then anyError fails.

7.4 Interface to action routines

We will need to provide an action routine for each action symbol. The routine
has the same name as the action symbol and takes no parameters.

The boilerplate for an action routine for action symbol Ais:

procedure A( )
| ocal V,e,...

V. =popSen(...)
if e:=anyError (V) then {pushSen(e); return}

pushSent. . .)
return
end

The action routine is a parameterless procedure with the same name as the ac-

tion symbol. It pops the appropriate number of values off the semantics stack.

If thereisan error token among them, then there was an error in asubphrase, so
the action routine pushesan error token back on the stack and returns. Otherwise
it performs whatever action it should and pushes a value back on the stack.

Of course, the pushSem’ s should be omitted if the action routineisn’t supposed
to leave any value on the stack.

Also, you might not call anyEr r or (V) if you want to recover from some syn-
tactic errors. For example, the parser’s error recovery might insert a“)” before
a“;”. Aslong asthe expression preceeding the“)” isokay, you might want your
compiler to go ahead and generate code.

7.5 Interface to rptperr.icn
procedure reportParseError(t)
called by the parser
parameter: t—a token encountered by the parser that it wasn’t expecting
returns nothing

Actually, thisissuch asmall procedure, we usually just include acopy of it with
our main program rather than compiling it separately.
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7.6 Main procedure

We will need to provide a main program to initialize our compiler and call the
parser. Do what we do: adapt one that already exists. Here isthe main program

from the TCLLKk parser generator:

Figure16  Example main program for a compiler.

OCO~NOUITAWNPE

# TCLLk -- an LL(1) parser generator
# Main program
# (witten by Dr. Thomas W Chri stopher)
#
l'i nk readLLk, parselLLk, scangram sengram senst k, gr amanal , LLk
procedure mai n(L)
| ocal filenane, baseFil enane, flags,fil enameParts
flags :=""
if L[1][1]=="-" then {
flags := L[1]
filename := L[2]
} else {
filenane: =L[ 1]
if /filename then
stop("usage: iconx tcLLk [flags] fil enane.grm')
filenameParts: =fileSuffix(filenane)

baseFi | enane: =fi | enaneParts[ 1]
if filename==(baseFilenanme||".LLKk") then
stop("would write output over input")
i nitScanner( filename |
(/filenameParts[2] & baseFilenane||".grm')) |
stop("unable to open input: ",filename)

i nitGanmar()
i nitSemanticsStack()

par seLLk(readLLk("tcLLk.LLk"))

finishDecl arations()

LLk(baseFi | enane| | ". LLk")

if find("p",flags) then printG ammar()
write(errorCount," error", (errorCount~=1&"s")|"",

and ", war ni ngCount," war ni ng", (war ni ngCount ~=1&"s")|"")
end
# From filename.icn in lcon Program Library
# Aut hor : Robert J. Al exander, 5 Dec. 89

# Modi fi ed: Thomas Chri stopher, 12 Oct. 94

procedure fileSuffix(s, separator)

I ocal i

/ separator :="

i 1=*s +1

every i := find(separator,s)

return [s[1:i],s[(*s >= i) + 1:0] | &null]
end
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Note:

3 Lines11-19read and check the input file name and optional flags.
4 Lines 21-24 decompose and check the input file name.

5 Lines 25-27 try to open the input file. Procedure initScanner will fail if
thefile can’t be opened.

6 L_i ne 29 initializes the semantics module, which contains the action rou-
tines.

7 Line 30initializes the semantics stack in module semstk.icn.

8 Line32readsthe TCLLk parsetables and calls the parser.

9 Lines 34-38 finish processing the user grammar.

10 Lines42-52 are adapted from the Icon programming library to separate
an extension from a base file name.

7.7 Structure of scanner

We must provide a parameterless procedure, scan, which will return the next to-
ken from theinput eachtimeitiscalled. Wewill probably wish to providewith
it aprocedure initScanner which will open the input file and initialize the scan-
ner. We ourselves call that routine from the main program, so we can choose
whatever interface we want for it.

Aswith main programs, we probably will not write an entirely new scanner
when we need one; we will adapt one that already exists. Hereisthe scanner we
usually start with, written for the language Oberon-2:

Figure 17 Example scanner.

#
# Scanner for Oberon 2
#

gl obal inputFile
gl obal i nputLine, i nputLi neNunber, i nput Col um, eoi Token
gl obal keywor dSet

OCO~NOOUITA, WN P

procedure initScanner(fil enane)

10 inputFile := open(fil ename,"r")

11 stop("unable to open input: ", filenane)
12 return

13 end

15 procedure fractionPart ()
16 suspend ="." || (tab(many(&digits)) | "")
17 end

19 procedure scal eFactor ()
20 suspend tab(any('ED)) || (tab(any('+"')) | "") || tab(many(&digits))
21 end

23 procedure scan()

24 local t,c,b

25 static whiteSpace,initldChars,idChars, hexdigits, coment Dept h, conment Li neNo
26 initial {

27 JinputFile := & nput
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28 inputLineNunber :=1

29 inputColum :=1

30 inputLine := read(inputFile)

31 eoi Token := &null

32 whiteSpace := &ascii[1l: 34] #control ++ bl ank

33 initldChars := & etters

34 hexdigits := &digits ++ ' ABCDEF

35 idChars := & etters ++ &digits ++ '$_'

36 keywordSet := set(]

37 "ARRAY", "BEG N', "BY", "CASE", " CONST", "DI V', "DO",
38 "ELSE","ELSIF","END", "EXI T", "FOR", "I F", " | MPORT",
39 "IN, "IS", " LOOP", " MOD', " MODULE", "NIL", "OF", "OR",
40 "PA NTER", " PROCEDURE" , " RECORD", " REPEAT", " RETURN",
41 "THEN', " TO', "TYPE", "UNTI L", "VAR", "WHI LE", "W TH"
42 1)

43 }

44 if \eoi Token then return eoi Token

45 repeat inputlLine ? {

46  tab(input Col um)

47  tab(many(whit eSpace))

48 ¢ := &pos

49 if b := tab(mny(&digits)) then {

50 if b ||:=tab(many(hexdigits)) || ="X" then {
51 t := Token("character", b,

52 i nput Li neNunber, c)

53 } elseif b |]|:=tab(many(hexdigits)) || ="H' then {
54 t := Token("hexinteger",b,

55 i nput Li neNunber, c)

56 } elseif b:=Db || fractionPart() ||

57 scal eFactor () then {

58 t := Token("real", b,

59 i nput Li neNunber, c)

60 } elseif b ||]:=fractionPart() then {

61 t := Token("real", b,

62 i nput Li neNunber, c)

63 } elseif b ||]:=="." ]| scaleFactor() then {
64 t := Token("real", b,

65 i nput Li neNunber, c)

66 } else {

67 t := Token("integer", b,

68 i nput Li neNunber, c)

69

70 i nput Col utm : = &pos

71 return t

72 '} else

73 if any(initldChars) then {

74 t := Token("ident",tab(many(idChars)),

75 i nput Li neNunber, c)

76 i nput Col utm : = &pos

77 i f menber (keywordSet,t. body) then

78 t.type : = t.body

79 return t

80 } else

81 if b:==(":=" 1] ">=" ] "<=" | "..") then {

82 i nput Col utm : = &pos

83 return Token(b, b, i nput Li neNunber, c)

84 } else

85 if ="(*" then {

86 i nput Col utm : = &pos

87 comentDepth := 1

88 comment Li neNo : = inputLi neNunber

89 whil e conment Depth > 0 do {

90 tab(upto('*(')|0)

91 if pos(0) then {
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92 &pos =1
93 i nput Li neNunber +:
94 if not (&subject
95 inputLine := read(inputFile))
96 then {
97 eoi Token := Token("EQ","EQ ",
98 i nput Li neNunber, 1)
99 wite("end of input in coment beginning at ",
100 conment Li neNo)
101 return eoi Token

1

}
103 } elseif ="*)" then
104 conment Depth -:
105 } else if ="(*" then
106 conment Dept h +:
107 } else {
108 move(1)

s 1~

}
111 i nput Col utm : = &pos

113 if b:=tab(any(',=#()[]1{}~+*/]|&";:><.")) then {
114 i nput Col utm : = &pos

115 return Token(b, b, i nput Li neNunber, c)

116 } else

117 if pos(0) then {

118 inputColum :=1

119 i nput Li neNunmber +:= 1

120 if not (inputLine := read(inputFile)) then {
121 eoi Token : = Token("EA","EA ",

122 i nput Li neNunber, 1)

123

124 return eoi Token

125

126 } else

127 if ="\"" then {

128 b :=tab(find("\""))

129 if not( ="\"" ) then {

130 wite("unterm nated string at ",
131 i nput Li neNunber," ", c)
132 }

133 t := Token("string", b, inputLineNunber, c)
134 i nput Col utm : = &pos

135 return t

136 } else

137 if =""" then {

138 b :=tab(find("'"))

139 if not( =""" ) then {

140 wite("unterm nated string at ",
141 i nput Li neNunber," ", c)
142 }

143 t := Token("string", b, inputLi neNunber, c)
144 i nput Col utm : = &pos

145 return t

146 } else

147

148 wite("unexpected character: ",nmove(1l),

149 " at line ",inputLineNunber," colum
150 i nput Col utm : = &pos

151

152 }

153 end

.+ C)

Notes:
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12
13
14

15

16

17
18
19

20

21
22
23
24

25
26
27
28
29

30
31

32
33

34
35
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Lines 9-13 are theinitialization routine, initScanner, that tries to open
theinput file.

Lines 15-21 help in recognizing real numbers.
Lines 23-153 are the scanner proper.

Lines 26-43 initiaize the scanner the first timeit is called. They could
have been included in initScanner if the static’s on line 25 had been
made global.

Line 44 checks to seeif an end-of-input token has been returned yet. If
S0, it returnsit again. We don'’t keep trying to read past the end of file.

Line 45 isarepeat because when wefall off the end of an input line, we
will have to read in anew line and restart our scan at its beginning. We
make inputLine the subject string and enter the compound expression to
look for tokens.

Line 46 moves the cursor & pos over to the next column to look in.
Line 47 moves the cursor past any white space.

Line 48 remembers where the first legible character was so that we can
report it as the column in a Token record.

Lines49 -151 are anested if statement to find tokens. The token types
are grouped by the class of character they begin with.

Lines 49-72 handle all tokens that begin with a digit.
Lines 50-53 handle characters written in hexadecimal format.
Lines 53-56 handle integers written in hexadecimal format.

Lines 56-60 handle real numbers with both afraction part and an expo-
nent.

Lines 60-63 handle real numbers with a fraction part but no exponent.
Lines 63-66 handle real numbers with an exponent but no fraction.
Lines 66-69 handle integers.

Line 70 remembers where to restart the scan on the next call.

Lines 73 through 80 handle identifiersand keywords. A keywordissm-
ply an identifier that isfound in the set keywordSet.

Lines 81-84 handle two character operators.

Lines 85-112 handle comments, which in Oberon-2 are delimited by (*
and *) and can extend over multiple lines and be nested. Following the
comment, this code falls out of theif expression to repeat the search for
atoken from the beginning.

Lines 113-116 handle single character operators and punctuation.

Lines 117-126 handle the scanner falling off the end of theline. (See
also lines 91-103 which handle the same thing within a comment.)

Lines 127-146 handle quoted strings.
Lines 146-151 handle the default case of an unexpected character in the
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input.
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Appendix A The TCLLK input grammar

Hereisagrammar for TCLLK’ sinput:

start = grammar.

grammar = { declaration }.

declaration=1D (":" rhs"." |"=" dlts".").

rhs = {elem}.

ats=rhs{"|" rhs}.

gem=ID[""]|"("dts™)" |"{" dts"}" |"[" ats"]".

In the grammar, 1D represents an identifier or a quoted string of special charac-
ters (recognition of 1Dsis handled by the scanner). The syntax

declaration=1D ":" rhs"." .

isaform of declaration that gives the symbols on the right hand side of the ":"
special meanings. There are four such declarations:

gtart: ID .

Thisdeclarestheidentifier ID to bethe start symbol. Itisequivalent to "start
=ID."

EQOI : ID.

This declares symbol ID to represent end-of-input. If thisis not provided,
the parser generator declares EOI itself to be the end-of-input symbol.

actions: ID11D2 ... I1Dn.

This declares the identifiers to be action symbols so they can be used with-
out following them with exclamation points.

fiducials: ID11D2 ... IDn.

This declares theidentifiersto be fiducial symbolsfor usein panic mode er-
ror recovery. Error recovery was discussed in Chapter 6 on page 55 .

Identifiers can have two forms;

A letter or underscore ("_"), followed by zero or more letters, digits, or un-
derscores.

A string of any characters except a quote enclosed in (double) quotes, e.g.
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Anidentifier must be entirely on one line.

A comment isthe same asin Icon: a# and all the charactersfollowing it up to
the end of the line.
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Appendix B Contents of the LLk record

The best way to use TCL LKk to generate a parser in some language other than
Iconisto ssimply run the parser generator and write aprogramin Icon to readin
the tables and trand ate them into the other language. To do that, you need to
know the contents of the LLk record returned by procedure readLLk.

The record definition is:

record LLk(sel,deflt,
term nal s, acti ons,
fiducials,firstFiducials,
m nLengRHS,
start, eoi)

All symbols are represented by character strings, their names. Thefieldsare as
follows

* dsartisthe start symbol.

* eoi isthe end-of-input symbol.

* terminalsisaset containing all the terminal symbols.
» actionsisaset containing all the action symbols.

* sdisatableusedto select which right hand sideto use for a nonterminal on
the stack and aterminal inthe input. Let L bethe LLk record, N be the non-
terminal, and T be the terminal, then if L.sel[N] isnot &null and if
L.sel[N][T] isnot &null, then L.sel[N][T] isalist of symbolsto replace N
with—the right hand side. However, if either L.sel[N] is &null or
L.sel[N][T] is&null, there may still be areplacement right hand side given
by field defit.

» defltisatableto specify default right hand sidesfor nonterminals. It isused
only if the -d flag was specified on the command line. Let L bethe LLk
record, N be the nonterminal, and T be the terminal. The parser will first try
tolook up aright hand sidein L.sel[N][T]. If thereis no right hand side
there, the parser triesto find onein L.deflt[ N]. If L.deflt[N] isnot &null, the
parser will replace N with the list of symbolsin L.deflt[ N]. The whole pur-
pose of thistableisto save spacein the sel table. It is used under two cir-
cumstances: (1) for nonterminals that have only one production or (2) for
the right hand side chosen by the largest number of terminal symbols.
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fiducialsisaset containing all the fiducial symbols, i.e., the subset of termi-
nal symbolsat which the parser will try to resume parsing following an er-
ror.

firstFiducialsis atable mapping nonterminals into the sets of fiducial sym-
bolsthey derive first. The error recovery usesthis when it scans ahead to a
fiducial and then seesif thefiducial is predicted. A fiducial is predicted if it
isonthe prediction stack or if anonterminal ison the stack which can derive
thefiducia first.

minLengRHS is atable mapping each nonterminal to one of its right hand
sides which will derive a minimum length terminal string. It is used by the
error recovery to replacement tokens for the tokens thrown away during
panic mode error recovery.

Care has been taken to minimize the storage required by the parsing tables. All
occurrences of the same right hand side are represented by the same list (not
merely lists with the same contents). All symbols are represented by the same
bytesin Icon’ s string area, not merely by equal strings.
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