
TCLLk vs. LR Parsing:
A preliminary comparison

Thomas W. Christopher

Tools of Computing LLC
P.O. Box 6335

Evanston IL 60204-6335
http://www.toolsofcomputing.com

Tools of Computing LLC
Technical Report

1999-3-#3-TC
March 20, 1999

[revised March 31, 1999]

TCLLk Parser Generator

Copyright © 1999. Thomas W. Christopher

Copyright © 1996, 1999 by Thomas W. Christopher

This document revised 3/31/99.

You may reproduce this document in its entirety for personal use with the TCLLk parser gen-
erator. For educational use at a nonprofit institution, you may reproduce this document for the
students provided you inform the author of the course name and number, the institution name
and address, and provide electronic links (instructor’s e-mail and course home page URL) to
be posted on the web. Send the listing to the author at the address or URL given below.

Any other uses of this document, such as incorporation in a derived work or a compilation, re-
quire written permission.

The TCLLk parser generator itself is public domain. Since it is in the public domain, it may be
copied and used without restriction. The author makes no warranties of any kind as to the cor-
rectness of TCLLk or its suitability for any application. The responsibility for the use of the
program lies entirely with the user.

To contact the author

Thomas Christopher
Tools of Computing LLC
P.O. Box 6335
Evanston IL 60204-6335
USA

tc@toolsofcomputing.com
http://www.toolsofcomputing.com

To obtain a up-to-date copy of this document and the TCLLk parser generator

http://www.toolsofcomputing.com/freesoftware.htm

Acknowledgments

Some of the work on TCLLk was done at Illinois Institute of Technology, where
the author is an Associate Professor.

i

Table of Contents

List of Figures . ii

List of Tables . iii

Summary . v

Foreword . vi

The competition between LL and LR . 7

Grammars accepted . 10

Size and speed of generated parsers . 22

Parser’s error recovery . 32

Finding bugs in grammars . 36

Conclusions . 38

TCLLk Parser Generator

ii

List of Figures

Figure 1 Parse table sizes (approximated). 27
Figure 2 Sizes of TCLLk’s translations of Huge LR grammar. 30
Figure 3 Yacc commands to aid in error recovery.. 35

iii

List of Tables

Table 1 C assignments, NQLALR(1) but not SLR(1). 12
Table 2 LALR(1) but not NQLALR(1). 14
Table 3 LR(0) item sets for the LR(1) grammar.. 16
Table 4 Initial size of the Java grammar. 17
Table 5 Java grammar through TCLLk. 20
Table 6 Increase in grammar size. 23
Table 7 LALR(1) parsers generated from TCLLk-accepted grammars. 24
Table 8 Percent utilization of parse tables. 25
Table 9 Backups in Java files. 27
Table 10 Backups in Java files with nonterminal ImportName.. 28

TCLLk Parser Generator

iv

Copyright © 1999. Thomas W. Christopher v

Summary
This paper is a preliminary comparison of the TCLLk parser generator and its
algorithms to its main competitor, LALR(1). We seek the answer to this ques-
tion:

What is the likelihood TCLLk’s parser generation algorithm will be prefer-
able to LALR(1)?

We compare on four criteria:

1. How much work is required to get the grammar into a form the parser
generator will accept?

2. What is the quality of parsers produced? How large are the parsers that
it generates? How fast will they run?

3. How good is the parser’s error recovery?

4. How much aid does the parser generator give in debugging grammars?

Our answers to these questions are:

1. TCLLk requires as little work to prepare grammars as LALR(1). Possi-
bly less.

2. The quality, size and speed, of parsers produced is better than LALR(1).
The size can be significantly less by using TCLLk’s -d command line
parameter.

3. The error recovery is easier and better than Yacc, and can be made much
better.

4. Good diagnostics have not been developed yet for TCLLk.

We conclude it is likely that TCLLk’s Strong LL(k) algorithms will prove pref-
erable to LALR(1).

TCLLk Parser Generator

vi Copyright © 1999. Thomas W. Christopher

Foreword
This paper assumes you know something about algorithms for generating LL(1)
and LALR(1) parsers. It also assumes you know something about TCLLk.
TCLLk documents are available at

http://www.toolsofcomputing.com/freesoftware.htm

See particularly the documents:

• Thomas Christopher, A Strong LL(k) Parser Generator That Accepts
Non-LL Grammars and Generates LL(1) Tables, Technical Report
1999-3-#2-TC, Tools of Computing, March 12, 1999.

• Thomas W. Christopher, User Manual for TCLLk: A Strong LL(k) Pars-
er Generator and Parser, Technical Report 1999-3-#1-TC, Tools of
Computing LLC, March 12, 1999

This presentation is incomplete. I should look up some references. Some infor-
mation I am repeating from memory. (I’m sure readers will point out the bugs.)

I decided that it is more important to get this information out quickly than to per-
fect the presentation first. I’ll be fixing the problems in later releases of this doc-
ument.

Availability. TCLLk is available from Tools of Computing LLC at

http://www.toolsofcomputing.com/freesoftware.htm

The current version (20 Mar 1999) is an alpha version on the verge of becoming
beta. It is written in the Icon programming language for use with a compiler wit-
ten in Icon. We (George Thiruvathukal and I) are preparing a postpass to gen-
erate parsers in Java, although we have no interest whatsoever to rewrite the
parser generator itself.

-Thomas Christopher

The competition between LL and LR

Copyright © 1999. Thomas W. Christopher 7

Chapter 1 The competition between LL and LR

In this paper we are considering the TCLLk parser generator and the suitability
of its algorithm for use in practical compilers. TCLLk is a Strong LL(k)1 parser
generator. When given an LL(1) grammar, it generates an LL(1) parser, so it
subsumes LL(1).

Both LL and LR style parsing require deterministic context free grammars.
They both parse in linear time.

The competition between them regarding which is the better algorithm is often
expressed as “Which is more powerful?” Phrased properly, that question is sus-
ceptible to a mathematical treatment. It can be translated into “Which takes a
larger class of languages?” or better, “Which can handle all the languages the
other can and more?” This does not mean, “Which can handle the grammars the
other one can?” You may have to find a different grammar for the same lan-
guage. However, the real question defies a mathematical solution. The real
question is, “Which is most convenient for the compiler writer?” Or, “What is
the difference in the quality of parsers produced by these algorithms?”

Fischer and LeBlanc in their textbook, Crafting a Compiler2, consider the ques-
tion based on five criteria:

1. Simplicity. They point out that the underlying parsing algorithm may
intrude on the user of a parser generator while the user is debugging his
or her grammar. They conclude that LL(1) is better than LALR(1) by
this criterion, since its underlying concepts are easier to understand. We
will consider this in Chapter 5, Finding bugs in grammars, on page 36.

2. Generality. We are interested in

• how many grammars can the algorithms can handle?

• can one handle the grammars the other one can and more?”

• is the algorithm powerful enough to handle all the interesting gram-

1.The “Strong” in its name refers to its method for computing look-aheads of more than one
symbol. It’s not as “powerful,” does not accept as many grammars, as a full LL(k) parser
generator.
2.Charles N. Fischer and Richard J. LeBlanc, Jr., Crafting a Compiler, Section 6.11 “LL(1)
or LALR(1), That Is the Question,” The Benjamin/Cummings Publishing Company, 1988.
They may have changed this section in more recent editions.

TCLLk Parser Generator

8 Copyright © 1999. Thomas W. Christopher

mars, i.e. programming language grammars?

They point out that while LL(1) and LALR(1) in practice are capable of
handling most programming languages, programming language defini-
tions are likely to come with LALR(1) grammars, not LL(1), and that it
takes considerable effort to convert the grammars into LL(1) form.

They give LALR(1) the advantage over LL(1) by this criterion.

3. Action symbols. The question here is “How flexible is the interface to
semantics routines?” LL(1) can call an action routine anywhere during
the recognition of a right hand side of a production. LR algorithms can
only call action routines while reducing a right hand side to a left hand
side. However, LALR(1) can call actions in the same places by a simple
transformation of the grammar, and many LALR(1) parser generators
(e.g. YACC) will do the transformation themselves. LL(1) has only a
slight edge here.

4. Error repair. Which parsers are better at recovering from or repairing
errors in the input sentence? LL parsers have a stack of what symbols it
expects to recognize later in the input, while LR parsers have a stack of
states they were in earlier in the parse. The information LL parsers have
is much easier to use to make good repairs. LL has a distinct advantage
here.

5. Table sizes. How large are the parsing tables? Let |N| be the number
nonterminal symbols, |T| be the number of terminal symbols, |P| be the
number of productions, L be the sum of the lengths of the productions,
and S be the number of states in an LR parser.

• LL(1) parsers require an uncompressed table size of |N|×|T| + L.

• LALR(1) requires an uncompressed table size of S×(|N|+|T|)+2×|P|.
In the worst case, LALR(1) can require as many as O(2L) states,
making it totally unusable. They estimate, however, that in practical
cases the number of states as about the same as the number of pro-
ductions and the number of productions as about two per nontermi-
nal.

They estimate that the average case ratio of LALR(1) table size to LL(1)
table size for typical programming languages, counting the difference in
sizes of LL(1) and LALR(1) grammars for the same language and count-
ing compression of the tables, is about 2 to 1. Overall, they give the ad-
vantage to LL(1).

In summary, in every way but in generality of grammars accepted, LL(1) is at
least as good as LALR(1), or better.

Following Fischer and LeBlanc, we will discuss the convenience of TCLLk in
comparison to LALR(1). We will try to answer these questions:

1. How much work is required to get the grammar into a form the parser

The competition between LL and LR

Copyright © 1999. Thomas W. Christopher 9

generator will accept?

2. What is the quality of parsers produced? How large are the parsers that
it generates? How fast will they run?

3. How good is the parser’s error recovery?

4. How much aid does the parser generator give in debugging grammars?

Some of these questions require qualitative answers and so are not easily for-
malized. We will consider each below.

TCLLk Parser Generator

10 Copyright © 1999. Thomas W. Christopher

Chapter 2 Grammars accepted

2.1 The LL/LR competition

No linear-time parsing algorithm will work with all context-free languages. In
general it takes about cubic time to parse arbitrary context free languages. (Just
a bit less in theory.)

So we can’t expect an arbitrary language to be acceptable to either style parser
generator. Worse yet, they place restrictions on the grammars they take. It can
take a lot of work to manipulate a grammar into an acceptable form.

LL parser generators have traditionally been the losers on work required to ma-
nipulate its input grammar. Traditionally, the user has had to do left recursion
removal and factoring. LR parser generators require neither.

TCLLk, however, does both left recursion removal and factoring itself, so that
is no longer an advantage for LR parser generators.

What about generality of languages accepted? LR(1) parsers have been shown
capable of parsing any deterministic context-free language. No LL(k) is, for any
size k. Indeed, LL(1) is not as powerful as LL(2), nor in general is LL(k) as
powerful as LL(k+1), and all of them are less powerful than LR(1).

Here is a killer grammar that is LR but not LL(k) for any k:

Non-LL grammar
start = A | B.
A = x A y | x.
B = x B z | x.

The problem for LL parsers? It may see an arbitrary number of x’s before dis-
covering, by seeing a y or a z, whether its seeing an A or a B. LL has to know
at the beginning.

Here’s what TCLLk reports for it:

D:\Parsers\LLK>tcllk nonll
Warning: more than one empty RHSfound while factoring
"start:103"
Error: factoring "start:106" requires search of more
than 3 iterations
1 error and 1 warning

Grammars accepted

Copyright © 1999. Thomas W. Christopher 11

But the real question is more qualitative. “For programming language gram-
mars, is there a significant advantage for either LL or LR parsers, or are they
about equivalent?” The above grammar may not be typical of those we need to
handle.

There is also another consideration: Full LR(1) parsers are not used because
their table space is much too large. We use some more restricted version,
SLR(1), NQLALR(1) a.k.a. SLALR(1), or LALR(1). What’s the difference?
All of these use LR(0) parsing tables with some tricks for handling look-ahead.
The parsing tables for LR parsers have one row for each state the parser can be
in and a column for every terminal and nonterminal symbol. The number of
states for LR(0) parsers is much smaller than for LR(1). Unfortunately, the few-
er states make it impossible to keep as accurate look-ahead information as
LR(1).

These are the tricks the practical LR algorithms use for look-aheads:

SLR(1) — “simple LR(1)” uses the symbols in the Follow sets to choose the
action to take in “inadequate states.”

LALR(1) — “look-ahead LR(1)” uses all the information available in the
graph of LR(0) states.

NQLALR(1) — “not quite look-ahead LR(1)” a.k.a. SLALR(1), “simple
look-ahead LR(1),” are attempts to implement LALR(1). They contain
a bug that everybody reinvents when they first attempt to implement
LALR(1).

LALR(1) is better than either of the others, but NQLALR(1) is not always better
than SLR(1) nor vice versa. LR(1) is more powerful than all of them, but of
course, isn’t used because of its space requirements.

The idea that LALR(1) is better than LL(k) comes from three sources:

1. As mentioned, LALR(1) parser generators have in the past required less
work from the user to get grammars into an acceptable form. This is no
longer the case with TCLLk.

2. There is the example non-LL grammar for which LR is clearly superior.
Indeed, that grammar is accepted by SLR(1) parsers generators. It may
not be representative, however.

3. LR(1) is better than LL(k) for all k. However, we don’t use LR(1). We
just assume that because it is more powerful, its simplifications will be
as well. This is not warranted. There are grammars that TCLLk will ac-
cept that none of the simplified LR parsers will.

2.2 Testing TCLLk against LR grammars

There are a number of classic grammars that show the differences between var-
ious LR parser generators. We tried them on TCLLk to see about where TCLLk
fits among the LR parsing algorithms. As it happened, TCLLk handled them all

TCLLk Parser Generator

12 Copyright © 1999. Thomas W. Christopher

with no problems. It didn’t even have to resort to look-ahead of more than one
symbol.

2.2.1 Non-SLR(1) but NQLALR(1)

Here is a grammar taken from the C programming language assignment state-
ments:

#Lvalue.grm --
taken from C assignment statements.
start = S EOF.
S = lvalue "=" expr.
S = expr.
lvalue = i.
lvalue = "*" expr.
expr = lvalue.

This grammar is not SLR(1). Upon encountering

* ii

Table 1 C assignments, NQLALR(1) but not SLR(1).

Item set 0:
S' → .S EOF Successors:
S → .lvalue = expr S⇒ 1
S → .expr lvalue⇒ 2
lvalue → .i expr⇒ 3
lvalue → .* expr i⇒ 4
expr → .lvalue *⇒ 5

Item set 1:
S' → S .EOF Successors:

EOF⇒ 6

Item set 2:
S → lvalue .= expr Successors:
expr → lvalue . =⇒ 7

Item set 3:
S → expr .

Item set 4:
lvalue → i .

Item set 5:
lvalue → * .expr Successors:
expr → .lvalue expr⇒ 8
lvalue → .i lvalue⇒ 9
lvalue → .* expr i⇒ 4

*⇒ 5

Item set 6:
S' → S EOF .

Item set 7:
S → lvalue = .expr Successors:
expr → .lvalue expr⇒ 10
lvalue → .i lvalue⇒ 9
lvalue → .* expr i⇒ 4

*⇒ 5

Item set 8:
lvalue → * expr .

Item set 9:
expr → lvalue .

Item set 10:
S → lvalue = expr .

Grammars accepted

Copyright © 1999. Thomas W. Christopher 13

in the input, a SLR(1) parser first recognizes an lvalue, but it can’t decide
whether to convert it to an expr or to leave it an lvalue. The inadequate item set
is

Item set 2:
S → lvalue .= expr
expr → lvalue .
Successor: = ⇒ 7

If the parser sees “=” next, it should leave the lvalue as an lvalue, which is need-
ed for the left side of an assignment expression, and read past the “=” going to
state 7. If it sees an EOF, it should convert the lvalue to an expr.

Unfortunately, SLR(1) knows that both “=” and EOF can follow an expr, so it
can’t decide whether to reduce the lvalue to an expr when it sees an “=”.

Both LALR(1) and NQLALR(1) can see from context that in that state, it should
only reduce the lvalue to an expr if it sees an EOF.

What happens when we pass this grammar through TCLLk?

D:\Parsers\LLK>tcllk lvalue
0 errors and 0 warnings

We’ve added some action symbols to the grammar to see what TCLLk is doing.
Here’s the grammar:

#Lvalue.grm --
taken from C assignment statements.
start = S EOF.
S = lvalue "=" expr P1!.
S = expr P2!.
lvalue = i P3!.
lvalue = "*" expr P4!.
expr = lvalue P5!.

Here’s what TCLLk converts it into:

S = lvalue "S:101".
"S:101" = "=" expr P1.
"S:101" = P5 P2.
expr = lvalue P5.
lvalue = i P3.
lvalue = "*" expr P4.
start = S EOF.

2.2.2 LALR(1) but not NQLALR(1)

Here’s a grammar from DeRemer and Pennello that is LALR(1) but not NQLA-
LR(1).

LALR(1)
start = S .

TCLLk Parser Generator

14 Copyright © 1999. Thomas W. Christopher

S = a A c P1!.
S = a g d P2!.
S = b A d P3!.
S = b g c P4!.
A = B P5!.
B = g P6!.

Its LR(0) item sets are shown in Table 2 Its inadequate sets are 6 and 9. In set
6, the parser should reduce the g to a B if it sees c next. Set 6 is only entered
from set 2, where if g is reduced to B, the B will be reduced to an A, and the A
will be followed by a c. Similar reasoning applies to set 9. The parser should
reduce the g to a B if it sees d next. Set 9 is only entered from set 3, where after
the reductions of g to B and B to A, the A will be followed by a d.

NQLALR(1) fails because, while searching backwards from set 6, reducing to
B will take it to set 7. NQLALR(1) will then search back from set 7 to all its
predecessors, seeing that the reduction of B to A will read a c next when it goes
through set 2 and a d next when it goes through set 3. It decides that both c and

Table 2 LALR(1) but not NQLALR(1).

Item Set 0:⊥
S’ → .S Successors:
S → .a A c S⇒ 1
S → .a g d a⇒ 2
S → .b A d b⇒ 3
S → .b g c

Item Set 1:
S’ → S .⊥ Successors:

 ⊥ ⇒ 4

Item Set 2:
S → a .A c Successors:
S → a .g d A⇒ 5
A → .B g⇒ 6
B → .g B⇒ 7

Item Set 3:
S → b .A d Successors:
S → b .g c A⇒ 8
A → .B g⇒ 9
B → .g B⇒ 7

Item Set 4:
S’ → S ⊥ .

Item Set 5:
S→ a A .c Successors:

c⇒ 10

Item Set 6:
S → a g .d Successors:
B → g . d⇒ 11

Item Set 7:
A → B .

Item Set 8:
S → b A .d Successors:

d⇒ 12

Item Set 9:
S → b g .c Successors:
B → g . c⇒ 13

Item Set 10:
S → a A c .

Item Set 11:
S → a g d .

Item Set 12:
S → b A d .

Item Set 13:
S → b g c .

Grammars accepted

Copyright © 1999. Thomas W. Christopher 15

d can follow the B in set 6, so d won’t choose whether to shift to set 11 or to
reduce. (Similar reasoning applies to set 9.) NQLALR(1)’s failure comes from
not remembering what set it arrived at set 7 from.

So anyway, what does TCLLk do with it? Here’s the command line and re-
sponse:

D:\Parsers\LLK>tcllk lalr1
0 errors and 0 warnings

Here’s the translated grammar:

S = a "S:101".
S = b "S:102".
"S:101" = g "S:103".
"S:102" = g "S:104".
"S:103" = d P2.
"S:103" = P6 P5 c P1.
"S:104" = c P4.
"S:104" = P6 P5 d P3.
start = S.

2.2.3 LR(1) but not LALR(1)

Here’s a grammar that is LR(1) but not LALR(1):

LR(1)
S = a E c P1!.
S = a F d P2!.
S = b E d P3!.
S = b F c P4!.
E = f P5!.
F = f P6!.
start=S.

The item sets are shown in Table 3. I won’t bother to explain this one. Here’s
what TCLLk does with it:

D:\Parsers\LLK>tcllk lr1
0 errors and 0 warnings

Yielding the translated grammar:

S = a "S:101".
S = b "S:102".
"S:101" = f "S:103".
"S:102" = f "S:104".
"S:103" = P5 c P1.
"S:103" = P6 d P2.
"S:104" = P5 d P3.
"S:104" = P6 c P4.
start = S.

TCLLk Parser Generator

16 Copyright © 1999. Thomas W. Christopher

2.3 Java grammar

For a test of TCLLk against LALR(1) for a practical language, we cut and past-
ed an LALR(1) Java 1.1 grammar from The Java Language Specification3 and
reworked it to be acceptable to TCLLk. The authors of the Specification discuss
the problems they had in converting their Java grammar to LALR(1) form. Here
we discuss the difficulties we had converting their LALR(1) grammar for
TCLLk’s use.

2.3.1 Putting the grammar into TCLLk syntax

We had to do a few cosmetic changes on their grammar. We passed the file
through a small Icon program to change its syntax. By hand we changed their
“one of” production form into a series of productions. We had the Icon program

Table 3 LR(0) item sets for the LR(1) grammar.

Item Set 0:
S’ → .S EOF Successors:
S → .a E c S⇒ 1
S → .a F d a⇒ 2
S → .b E d b⇒ 3
S → .b F c

Item Set 1:
S’ → S .EOF Successors:

EOF⇒ 4

Item Set 2:
S → a .E c Successors:
S → a .F d E⇒ 5
E → .f F⇒ 6
F → .f f⇒ 7

Item Set 3:
S → b .E d Successors:
S → b .F c E⇒ 8
E → .f F⇒ 9
F → .f f⇒ 7

Item Set 4:
S’⇒ S EOF .

Item Set 5:
S → a E .c Successors:

c⇒ 10

Item Set 6:
S → a F .d Successors:

d⇒ 11

Item Set 7:
E → f.
F → f.

Item Set 8:
S → b E .d Successors:

d⇒ 12

Item Set 9:
S → b F .c Successors:

c⇒ 13

Item Set 10:
S → a E c .

Item Set 11:
S → a F d .

Item Set 12:
S → b E d .

Item Set 13:
S → b F c .

3.James Gosling, Bill Joy, Guy Steele, The Java Language Specification, available from
www.javasoft.com.

Grammars accepted

Copyright © 1999. Thomas W. Christopher 17

create productions for all the symbols whose names end in “opt” indicating op-
tional. The initial size of the Java grammar is shown in Table 4.

TCLLk reported errors:

9 errors and 0 warnings

2.3.2 Dangling else

Java has a dangling else clause. LL parser generators have to give dangling elses
special treatment. LR parser generators can handle them in the grammar, so
that’s what the Gosling et al. did.

They put in a number of nonterminals with names containing “NoShortIf”, e.g.
StatementNoShortIf. Short ifs are if-statements without else-clauses. The rule is
that an if statement with an else clause cannot contain an if statement without
an else before its else, as shown by these productions for if statements:

IfThenStatement = if "(" Expression ")" Statement .

IfThenElseStatement = if "(" Expression ")"
StatementNoShortIf else Statement .

IfThenElseStatementNoShortIf = if "(" Expression ")"
StatementNoShortIf else StatementNoShortIf .

TCLLk can handle if-statements without this syntax, and it cannot handle them
with it. We removed the “NoShortIf” versions of statements, a simplification
of the grammar that removed nine productions.

2.3.3 Assignment expressions

TCLLk complained about the number of factorings needed and about look-
ahead depth being exceeded. The complaints involved various levels of expres-
sions.

We started with Primary and related nonterminals and added more expressions
to it, running it through TCLLk, looking for where the problems occurred. The
errors occurred when AssignmentExpression was added.

One of the nasty constructs for LL parsers is assignment expressions. The left
hand side is usually some low level of expression. In Java:

AssignmentExpression = ConditionalExpression .

AssignmentExpression = Assignment .

Assignment = LeftHandSide AssignmentOperator
AssignmentExpression .

Table 4 Initial size of the Java grammar.

number of nonterminals: 160

number of productions: 331

number of symbols on right hand sides: 603

TCLLk Parser Generator

18 Copyright © 1999. Thomas W. Christopher

LeftHandSide = Name .

LeftHandSide = FieldAccess .

LeftHandSide = ArrayAccess .

A ConditionalExpression is a high level of expression, which can begin with
the same kinds of things as LeftHandSide. Deep factoring is required to handle
AssignmentExpressions — replacing nonterminals with their right hand sides
repeatedly until factoring is possible.

TCLLk tried deep factoring, but for whatever reason, it didn’t work. We resort-
ed to a trick often used when building parsers: we replaced the definition of As-
signment with:

Assignment = LeftHandSide AssignmentOperator
AssignmentExpression .

LeftHandSide = ConditionalExpression .

This will accept syntactically illegal constructs, but we can reject them in the
semantics routines (easily, if we build a tree and generate code from it). This
worked.

We then experimented with a lower level of expression:

LeftHandSide = PostfixExpression.

which also worked. This led to a third version. We replaced the definition of
PostfixExpression :

PostfixExpression = Primary .
PostfixExpression = Name .
PostfixExpression = PostIncrementExpression .
PostfixExpression = PostDecrementExpression .
PostIncrementExpression = PostfixExpression

"++" .
PostDecrementExpression = PostfixExpression

"--" .

with

PostfixExpression = NameOrPrimary .
NameOrPrimary = Primary .
NameOrPrimary = Name .
PostfixExpression = PostIncrementExpression .
PostfixExpression = PostDecrementExpression .
PostIncrementExpression = PostfixExpression

"++" .
PostDecrementExpression = PostfixExpression

"--" .

and replaced the definition of LeftHandSide:

LeftHandSide = NameOrPrimary.

Grammars accepted

Copyright © 1999. Thomas W. Christopher 19

This also worked, and this is the grammar we kept.

2.3.4 Switch bodies

The final problem was with switch statements. Their syntax is

SwitchStatement = switch "(" Expression ")" SwitchBlock .

SwitchBlock = "{" SwitchBlockStatementGroupsopt
SwitchLabelsopt "}" .

SwitchBlockStatementGroups = SwitchBlockStatementGroup .

SwitchBlockStatementGroups = SwitchBlockStatementGroups
SwitchBlockStatementGroup .

SwitchBlockStatementGroup = SwitchLabels BlockStatements .

SwitchLabels = SwitchLabel .

SwitchLabels = SwitchLabels SwitchLabel .

SwitchLabel = case ConstantExpression ":" .

SwitchLabel = default ":" .

The problem was SwitchBlockStatementGroupsopt followed by SwitchLa-
belsopt. The SwitchBlockStatementGroupsopt can begin with SwitchLa-
bels or can be empty. Similarly, SwitchLabelsopt can begin with
SwitchLabels or can be empty. The two in a row confused TCLLk.

We used TCLLk’s extended input syntax to solve the problem:

SwitchBlock = "{" {SwitchBlockStatementGroup}
SwitchLabelsopt "}" .

TCLLk’s input translates this into the following productions:

SwitchBlock = "{" SwitchBlock_2_20.

SwitchBlockStatementGroup = SwitchLabels BlockStatements.

SwitchBlock_2_20 = SwitchLabelsopt "}".

SwitchBlock_2_20 = SwitchBlockStatementGroup
SwitchBlock_2_20.

SwitchLabel = case ConstantExpression ":".

SwitchLabel = default ":".

SwitchLabels = SwitchLabel.

SwitchLabels = SwitchLabels SwitchLabel.

SwitchLabelsopt = SwitchLabels.

SwitchLabelsopt =.

SwitchStatement = switch "(" Expression ")" SwitchBlock.

The essential part of the translation is SwitchBlock_2_20. The simplest trans-
lation of a repetitive form, {x}, would yield a nonterminal, A, and two right
hand sides. One right hand side would be x A and the other one would be emp-
ty.

TCLLk Parser Generator

20 Copyright © 1999. Thomas W. Christopher

Here the empty alternative has been replaced by the part of the SwitchBlock
following it, i.e. SwitchLabelsopt "}". This allows TCLLk to use factoring.
TCLLk converted it to:

SwitchBlock = "{" SwitchBlock_2_20.

SwitchBlock_2_20 = SwitchLabels "SwitchBlock_2_20:102".

SwitchBlock_2_20 = "}".

"SwitchBlock_2_20:102" = "}".

"SwitchBlock_2_20:102" = BlockStatements SwitchBlock_2_20.

SwitchLabel = case ConstantExpression ":".

SwitchLabel = default ":".

SwitchLabels = SwitchLabel "SwitchLabels:101".

"SwitchLabels:101" = SwitchLabel "SwitchLabels:101".

"SwitchLabels:101" =.

SwitchStatement = switch "(" Expression ")" SwitchBlock.

TCLLk found no further problems with the Java grammar.

Overall, there was not much work in converting an LALR(1) grammar to
TCLLk using the default limit of 3 factorings per nonterminal and a 2 symbol
look-ahead.

Table 5 shows the figures for the Java grammar before and after these by-hand
transformations and after TCLLk got through with it.

How long does TCLLk take to build and write out parse tables for Java? When
executed in the command file:

writetime
tcllk Java
writetime

the difference between the two times written is usually 8 seconds (occasionally
7) on a 200 MHz Pentium PC running Windows NT. A more careful experiment
could be done easily, but it doesn’t seem worth it: The execution time is trivial.

Table 5 Java grammar through TCLLk.

Original
LALR(1)

Input to
TCLLk

After
TCLLk

number of nonterminals: 160 155 196

number of productions: 331 312 587

number of symbols on
right hand sides:

603 561 1303

Grammars accepted

Copyright © 1999. Thomas W. Christopher 21

2.4 Possible improvements in TCLLk

When fixing switch bodies in the Java grammar, we used the grammar input
transformation to push a tail of an enclosing production into a subproduction,
allowing factoring. This transformation can be used to handle nonterminals that
have a conflict between the follow set for an empty production and the first set
for some other right hand side. Currently this is always handled by building
look-ahead trees that search beyond the end of the right hand side. With this
transformation, these nonterminals can sometimes be handled by factoring.

With this transformation, we would not have had to rewrite the definition of
switch statements.

2.5 Overall

TCLLk appears to be as convenient to prepare grammars for as LALR(1) parser
generators. This conjecture is not susceptible to mathematical proof, nor per-
haps experimentation, but it is possible to reach some consensus on with broad-
er use of TCLLk or other parser generators using its algorithm.

TCLLk Parser Generator

22 Copyright © 1999. Thomas W. Christopher

Chapter 3 Size and speed of generated parsers

3.1 Fischer and LeBlanc’s estimates

To recall Fischer and LeBlanc’s discussion on the size of the parsing tables. Let
|N| be the number nonterminal symbols, |T| be the number of terminal symbols,
|P| be the number of productions, L be the sum of the production lengths, and S
be the number of states in an LR parser.

• LL(1) parsers require an uncompressed table size of |N|×|T| + L.

• LALR(1) requires an uncompressed table size of S×(|N|+|T|)+2×|P|. In
the worst case, LALR(1) can require as many as O(2L) states, making it
totally unusable. They estimate, however, that in practical cases the
number of states as about the same as the number of productions and the
number of productions as about two per nonterminal.

Of course, the size of an LL(1) grammar for a particular language is almost cer-
tain to be larger than the LALR(1) grammar one would use. Also, the parsing
tables are typically compressed.

They include these rules of thumb for estimating the sizes of programming lan-
guage grammars:

|T| = |N|/2

|P| = 2×|N|

L = 7×|N|

S ≈ |P|

Only a fraction of the total number of possible table entries for either LL(1) or
LALR(1) parsers are significant; the rest cannot be accessed while parsing a
correct program, so they indicate an error has been detected. By only represent-
ing the nonerror entries, parsers can save a great deal of space. Fischer and Le-
Blanc estimate that 10% of LL(1) tables are non-error entries, and 5% of
LALR(1) tables. Parser generators typically compress the tables. TCLLk does.

These approximations allow them to estimate parse table sizes as functions of
the number of nonterminals:

Size of LL(1) tables ≈ 0.05×|N|2 + 7×|N|

Size of LALR(1) tables ≈ 0.15×|N|2 + 4×|N|

Size and speed of generated parsers

Copyright © 1999. Thomas W. Christopher 23

The limiting ratio of LALR(1) size to LL(1) size is 3 for grammars of the same
size. That is not, however, the ratio for the same language, since we must also
consider that LL(1) grammars are larger than LALR(1) for the same language.

They estimate that the average case ratio of LALR(1) table size to LL(1) table
size for typical programming languages, counting the difference in sizes of
LL(1) and LALR(1) grammars for the same language and counting compres-
sion of the tables, is about 2 to 1. For space required, they give the advantage to
LL(1).

3.2 Sizes of parsers

3.2.1 Translated sizes of several grammars

TCLLk, by translating grammars to LL(1) form (perhaps with backups) allows
us to start with one grammar, estimate the LALR(1) table size and compare to
the LL(1) table size for the same language.

The size of a grammar increases when TCLLk (with some programmer inter-
vention) translates a grammar from LALR(1) form to LL(k). How much of an
increase can we expect? It is important; if we use Fischer’s and LeBlanc’s for-
mulas for LALR(1) and LL(1) table sizes and if we can estimate the growth in
grammar size, we can estimate whether TCLLk will produce smaller parsers
than an LALR(1) parser generator, or larger, or about the same size.

Table 6 gives the increase in grammar size for a number of grammars when con-
verted to LL(1) form by TCLLk. It should give some indication of what expan-
sion can be expected. However, it is far from scientific. It doesn’t provide a
sample of programming language grammars, whatever that might be. Plus, the
initial grammars were not perfectly LALR(1); Table 7 shows the number of con-
flicts Bison discovered.

Table 6 Increase in grammar size.

Grammar Initial After TCLLk Growth

C Nonterminals 80 133 66.3%

Productions 215 323 50.2%

Total RHS 401 599 49.4%

EULER Nonterminals 33 46 39.4%

Productions 94 111 18.1%

Total RHS 185 220 18.9%

EULER Nonterminals 33 57 72.7%

(hand trans-
lated by an
expert)

Productions 95 128 34.7%

TCLLk Parser Generator

24 Copyright © 1999. Thomas W. Christopher

With the exception or Java, there are no expansions of more than a factor of 2
in numbers of nonterminals, productions, or summed lengths of productions for
and language.

We passed the grammars through a translation program to put them in Yacc
form and then passed them through Bison. Table 7 shows the number of shifts,
reduces, states, and conflicts Bison reported. Only the EULER grammar was
completely acceptable. The grammars with shift/reduce conflicts may produce
correct parsers; they can be caused by such things as dangling elses, and they
are resolved by shifting. The reduce/reduce conflict for the C grammar guaran-
tees that it’s LALR(1) parser isn’t correct.

3.2.2 Compressed tables

Recall that only a fraction of the total number of possible table entries for either
LL(1) or LALR(1) parsers are significant; the rest, indicating input errors, can

Total RHS 262 326 24.4%

Icon Nonterminals 48 75 56.7%

Productions 155 297 91.6%

Total RHS 331 584 76.4%

Pascal Nonterminals 37 46 24.3%

Productions 84 93 10.7%

Total RHS 187 184 -1.6%

Java Nonterminals 155 196 26.5%

Productions 312 587 88.1%

Total RHS 561 1303 132.3%

Table 7 LALR(1) parsers generated from TCLLk-accepted grammars.

Grammar shifts reduces states shift/reduce
conflicts

reduce/reduce
conflicts

C 2836 260 342 2 2

EULER 1833 96 165 0 0

Icon 3429 162 270 7 0

Pascal 581 91 162 1 0

Java 4464 352 495 4 0

Table 6 Increase in grammar size.

Grammar Initial After TCLLk Growth

Size and speed of generated parsers

Copyright © 1999. Thomas W. Christopher 25

be squeezed out to save space. Fischer and LeBlanc estimate that 10% of LL(1)
tables are non-error entries, and 5% of LALR(1) tables.

In TCLLk, even greater compression can be specified. The TCLLk parser has a
selection table in which it looks up nonterminals and terminals to decide which
right hand side to replace the nonterminal with. It also has a default table. If it
doesn’t find the nonterminal/terminal pair in the selection table, it looks up the
nonterminal in the default table to see if it is associated with a right hand side
there. If there is only a single right hand side for a nonterminal, it will be in the
default table, not in the selection table; no matter what the next symbol is, the
nonterminal has to be replaced with that right hand side.

If the user specifies the -d flag to TCLLk, it will also use the default table for
the right hand side associated with the greatest number of look-ahead terminals.
This won’t result in incorrect parsing; if the next terminal isn’t correct, the pars-
er will never recognize it. Errors will be detected at the same point in the pro-
gram, but after several nonterminals have been replaced by their default right
hand sides. Alone, this loses information for error recovery, but it does save
space. TCLLk’s parser, however, avoids the loss of information in a manner to
be discussed below. Table 8 shows the selection table occupancy without and
with the -d flag. It also shows the occupancy of the LALR(1) parsing tables for
the grammars before they were transformed by TCLLk.

The Fischer/LeBlanc estimate of 10% occupancy of LL(1) tables and 5% occu-
pancy of LALR(1) tables may be compared to these figures.

As mentioned, using the default table for the most common right hand side
could result in a loss of information for error recovery: for every nonterminal
expanded, i.e. replaced by a right hand side, the possibility of finding the other
right hand sides is lost. TCLLk’s parser, however, doesn’t lose this information.
It uses a technique taken from Burke-Fisher error recovery:

• When a nonterminal is expanded, the nonterminal is placed in a queue.

Table 8 Percent utilization of parse tables.

Language TCLLk without -d
flag.a

a.Percent of selection table utilized using default table only for single productions.

TCLLk with -d
flag.b

b.Percent of selection table utilized using default table for the most commonly selected
RHS.

LALR(1)
% occupied

C 11.2% 4.9% 5.5

Euler 21.1% 2.6% 12.3

Icon 15.3% 4.3% 10.1

Pascal 8.4% 3.1% 5.1

Java 11.5% 4.1% 3.8

TCLLk Parser Generator

26 Copyright © 1999. Thomas W. Christopher

• When an action symbol is removed from the prediction stack, it is also
queued.

• When a terminal is matched, the parser goes through the queue in FIFO
order, removing nonterminals and performing the queued actions.

• An error is detected when either a terminal on the top of the prediction
stack does not match the next symbol in the input or no right hand side
can be chosen for the nonterminal on the top of the stack. Upon encoun-
tering the error, the parser restores the state it was in just after matching
the previous terminal. It goes backwards (LIFO) through the queue re-
moving the actions and nonterminals and doing the following:

• it pushes each action symbol back on the prediction stack,

• for each nonterminal, it removes the nonterminal’s right hand side
from the prediction stack and then pushes the nonterminal back on
the prediction stack.

Since the parser is able to reconstruct all the information it had before expand-
ing nonterminals, it has all the information it could have after matching the pre-
vious terminal. (Modifying the parser to also queue up a certain number of
terminals would allow the parser to back up to the state it was in before match-
ing the most recent one or more terminals. This is the first step towards imple-
menting Burke-Fisher error recovery.)

3.2.3 Comparing TCLLk tables to LALR(1)

Figure 1 shows a comparison of parse table sizes. The LALR(1) sizes are com-
puted using Fischer’s and LeBlanc’s formula, both from their estimates and
from the parsers produced by Bison. The TCLLk are estimated based on the
fraction of selection table occupied, the sum of lengths of the right hand sides,
and the number of elements in the default tables. It omits the error recovery in-
formation. The units are not bytes. They are for crude comparison purposes
only.

Figure 1 indicates several things:

• the actual LALR(1) parsers are larger than Fischer’s and LeBlanc’s es-
timates.

• TCLLk’s parsers without the -d flag are comparable in size to Fischer’s
and LeBlanc’s estimates for LALR(1) parsers, neither much better or
worse.

• TCLLk’s parsers without the -d flag are noticeable smaller than the ac-
tual LALR(1) parsers.

• TCLLk’s parsers with the -d flag can be expected to be much smaller
than LALR(1) parsers.

Size and speed of generated parsers

Copyright © 1999. Thomas W. Christopher 27

3.3 Speed of parsers

Both LALR(1) and LL(1) parsers are linear time in the length of the input. How
will k-symbol look-ahead affect TCLLk’s parser’s speed?

It won’t change the linear time. A full k-symbol look-ahead reads k symbols
then backs up k symbols, then reads one. Suppose k symbol look-ahead were
required for every symbol the parser reads. That would increase the time it
spends reading the program by a factor of (2k+1). Of course, the increase in ex-
ecution time is unlikely to be anywhere near that, because

• a compiler does more than read and recognize the program, so it’s only
a fraction that will take longer,

• practical programming language grammars do not have a k-symbol
look-ahead on every symbol—indeed very few, and

• TCLLk can remove back-ups on look-ahead if the back-ups would be
followed by reading terminal symbols.

To see what fraction of the tokens read might be backed up over and read again,
we implemented a Java scanner and parser and tried it out on several Java code
files. Table 9 shows the number of tokens read and backups.

Figure 1 Parse table sizes (approximated).

Parse table sizes

0

1000

2000

3000

4000

5000

6000

C EULER Icon Pascal Java

S
iz

e
Estimated LALR(1)

Actual LALR(1)

TCLLk w/out -d

TCLLk with -d

Table 9 Backups in Java files.

Java file backups tokens in
file

backups as %
of tokens

com.toolsofcomputing.SharedTableOfQueues 96 422 23%

TCLLk Parser Generator

28 Copyright © 1999. Thomas W. Christopher

For a parse using the Java grammar, about one backup occurs for each five to-
kens read. For an examination of the translated grammar, the reason appears: a
Name looks ahead beyond the Identifier. The cause appears to be

TypeImportOnDemandDeclaration = import Name "." "*"
";".

Name = SimpleName.

Name = QualifiedName.

QualifiedName = Name "." Identifier.

SimpleName = Identifier.

A “. *” can follow a Name, and a “. Identifier” can continue a Name.
TCLLk has to look ahead to decide what to do in an import declaration.

An obvious optimization was to redefine ImportDeclarations as follows:

ImportDeclaration = import ImportName ";" .

ImportName = Identifier "." ImportName.

ImportName = Identifier "." "*".

ImportName = Identifier .

After making these changes, the backups are as shown in Table 10. With a little

com.toolsofcomputing.FutureQueue 130 519 25%

java.util.Hashtable 366 1660 22%

java.util.Vector 250 1268 20%

java.util.StringTokenizer 97 454 21%

java.util.BitSet 256 1329 19%

java.util.Date 472 2349 20%

java.util.Calendar 346 2014 17%

Table 9 Backups in Java files.

Java file backups tokens in
file

backups as %
of tokens

Table 10 Backups in Java files with nonterminal ImportName.

Java file backups tokens in
file

backups as %
of tokens

com.toolsofcomputing.SharedTableOfQueues 0 422 0%

com.toolsofcomputing.FutureQueue 2 519 <1%

Size and speed of generated parsers

Copyright © 1999. Thomas W. Christopher 29

care the fraction of backups was made utterly trivial.

3.4 A grammar for exponential LALR parser size

Fischer and LeBlanc present the following grammar that can produce an expo-
nential number of states (O(2n)) in an LALR(1) parser with O(n2) productions:

start = S.
S = Xi zi. for 1≤i≤n
Xi = yj Xi | yj. for 1≤i,j≤n and i≠j

For example, for n=3, we have this grammar:

S = X1 z1.
S = X2 z2.
S = X3 z3.
X1 = y2 X1.
X1 = y2.
X1 = y3 X1.
X1 = y3.
X2 = y1 X2.
X2 = y1.
X2 = y3 X2.
X2 = y3.
X3 = y1 X3.
X3 = y1.
X3 = y2 X3.
X3 = y2.
start = S.

We shoved the grammar through TCLLk to see what would happen. For the n=3
grammar, we got:

S = y2 "S:104".
S = y1 "S:105".
S = y3 "S:106".

java.util.Hashtable 11 1660 1%

java.util.Vector 11 1268 1%

java.util.StringTokenizer 5 454 1%

java.util.BitSet 6 1329 <1%

java.util.Date 74 2349 3%

java.util.Calendar 33 2014 2%

Table 10 Backups in Java files with nonterminal ImportName.

Java file backups tokens in
file

backups as %
of tokens

TCLLk Parser Generator

30 Copyright © 1999. Thomas W. Christopher

"S:104" = z1.
"S:104" = z3.
"S:104" = y3 "X1:101" z1.
"S:104" = y1 "X3:103" z3.
"S:104" = y2 "S:104".
"S:105" = z3.
"S:105" = z2.
"S:105" = y3 "X2:102" z2.
"S:105" = y2 "X3:103" z3.
"S:105" = y1 "S:105".
"S:106" = z1.
"S:106" = y2 "X1:101" z1.
"S:106" = z2.
"S:106" = y1 "X2:102" z2.
"S:106" = y3 "S:106".
X1 = y2 "X1:101".
X1 = y3 "X1:101".
"X1:101" = X1.
"X1:101" =.
X2 = y1 "X2:102".
X2 = y3 "X2:102".
"X2:102" = X2.
"X2:102" =.
X3 = y2 "X3:103".

Huge LR grammar

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5

n

n
u

m
b

er

init nonterm

init prod

init RHS

final nonterm

final prod

final RHS

Figure 2 Sizes of TCLLk’s translations of Huge LR grammar.

Size and speed of generated parsers

Copyright © 1999. Thomas W. Christopher 31

X3 = y1 "X3:103".
"X3:103" = X3.
"X3:103" =.
start = S.

Figure 2 shows the growth of the resulting grammar sizes produced by TCLLk
when given a series of these grammars.It is consistent with the hypothesis that
TCLLk’s algorithm also results in an exponential growth in grammar size, and
hence in table size, in the worst case.

3.5 Possible improvements in TCLLk

Using Burke-Fisher4 error recovery, parser operations (nonterminals replaced
with right hand sides, terminal symbols recognized, and action symbols
popped) are queued. When an error is detected, the queue allows the parser to
back up to an earlier state while trying alternative repairs. This type of error re-
covery is not appropriate for interactive systems where actions must be per-
formed immediately to respond to the user.

This queue allows the use of the default table without loss of error recovery ca-
pability. This results in a significant reduction in parse table sizes over LA-
LR(1). It would also provide much better error recovery than either Yacc or
TCLLk does currently.

Since TCLLk already uses a simpler version of the queue, it can do just as well
with the -d flag as without it. Why do we need to specify the flag to get the
smaller parsers? It is vestigial from TCLL1, the LL(1) parser generator and
parser TCLLk was derived from, which did not use the queue. The -d flag will
be eliminated in a future release.

3.6 Overall

With limited use of the default table, TCLLk appears comparable to LALR(1)
with respect to parse table size. With extensive use of it, TCLLk can be signif-
icantly better. The use of Burke-Fisher error recovery can allow the parser to use
the smaller size tables with an improved error recovery.

TCLLk is better with respect to parser size. It is probably not significantly worse
with respect to parser speed.

4.Burke, Michael, and Fisher, Gerald, “A practical method for syntactic error diagnosis and
repair,” SIGPLAN Notices 17(6). Also “A practical method for LR and LL syntactic error
diagnosis and recovery,” ACM TOPLAS, 9(2) (1987), 164-197.

TCLLk Parser Generator

32 Copyright © 1999. Thomas W. Christopher

Chapter 4 Parser’s error recovery

Error recovery is usually a lot better in LL than in LR parsers. LL parsers have
a stack of the symbols they are expecting to match. LR parsers have their infor-
mation hidden in the parse tables and a stack of the numbers of the states they
were in. For a concrete comparison, we will examine TCLLk and Yacc.

4.1 TCLLk’s error repair

TCLLk generates parsers with panic mode error repair.

The parser discovers an error in its input when the next input symbol either does
not match the terminal symbol on top of the prediction stack or it does not select
a right hand side for the nonterminal on top of the stack. There are no rules to
tell the parser what to do next.

The parser gives an error message:

unexpected token XXXX at line YYYY, column ZZZZ

The parser then attempts to resume parsing. There are two problems:

• The parser must get past the token that caused the syntactic error.

• The semantics routines must not become so confused that they either crash
or flood the user with error messages. This requires that the semantics stack
be set to an appropriate depth and that the contents of the stack not cause
errors in the action routines. (Of course, the semantics could just be turned
off.)

The simple error repair technique that TCLLk uses is panic mode. When the
parser has detected and reported an error, it goes into panic mode and throws
away part of the input until it has found a token in the input and a symbol in the
prediction stack that allow parsing to continue. Using the prediction stack, it
generates replacement text for the input that was thrown away. Then it returns
to normal mode and continues parsing.

This leads to two questions:

• How does it choose an input symbol to restart at?

• How does it generate replacement text for the input it has thrown away?

The answers to the two questions are related.

Parser’s error recovery

Copyright © 1999. Thomas W. Christopher 33

The parser will read ahead to one of a set of symbols that delimit major sections
of the program. These symbols are called fiducial symbols, symbols the parser
can trust. For many programming languages, the fiducial symbols include ";",
"then", "else", and "end", symbols that end or separate statements. If an error is
detected within a statement, the parser will throw away the rest of the statement
and try to resume parsing with the next.

The parser will not, however, accept just any fiducial. The fiducial must be pre-
dicted. The parser will throw away input symbols up to a fiducial and then look
down the prediction stack. If it finds the fiducial symbol on the stack, or if it
finds a nonterminal symbol that derives that fiducial symbol first in a string,
then the parser will remove the symbols on the prediction stack down to the fi-
ducial or nonterminal and will then resume parsing.

If the fiducial is not predicted, of course, the parser throws it away and continues
looking. EOI (end of input) is a fiducial, and it is at the bottom of the stack, so
the parser can at least resynchronize by throwing away all the rest of the pro-
gram.

EOI is the only fiducial chosen by the parser generator. Users must specify the
others with the fiducials declaration:

fiducial: f1 f2 ... fn .

If the parser just throws away part of the prediction stack, the semantics stack
will be mangled when the parsing resumes and the semantics routines will
crash. Some parsers just turn off semantics on the first error. This is not a good
solution for interactive systems.

The TCLLk parser tries to repair errors. After throwing away part of the input,
it does not just throw away the top part of the prediction stack, but instead gen-
erates a replacement string of tokens for the input it has thrown away. Recall
that an LL parser works by generating a program atop the input program, match-
ing them. It is trivial to generate the replacement tokens. Instead of throwing
away symbols from the prediction stack, it does the following with each top
symbol of the prediction stack down to the symbol that predicted the fiducial:

• If the top symbol is a terminal, the parser generates an error token and push-
es it onto the semantics stack. An error token can be recognized by the ac-
tion routines. It warns the action routines that the token did not come from
the user. The routines should not try to use the token nor give any further
error messages.

• If the top symbol is an action symbol, the parser calls its action routine. The
action routine will adjust the semantics stack properly. Most action routines
will start by removing the correct number of values from the semantics stack
and checking if there were any error tokens among them. If the action rou-
tine finds an error token, it will typically push the correct number of error
tokens back on the stack (zero or one) and return immediately.

• If the top symbol is a nonterminal, the parser replaces it with one of its right

TCLLk Parser Generator

34 Copyright © 1999. Thomas W. Christopher

hand sides. The parser chooses the right hand side that will generate a short-
est possible string of terminals. If there are several such right hand sides, the
parser generator chooses arbitrarily which one will be used.

To summarize, TCLLk provides panic mode error repair with very little inter-
vention from the user. The user only needs to specify some fiducial symbols.

4.2 Yacc’s error recovery

What about LALR(1) parser generators? Here’s what YACC does.

When yyparse, the parser generated by yacc, detects an error in the input, it calls
the subroutine yyerror() (which the user provides) and then attempts to recover
from the error.

Routine yyerror can be as simple as:

yyerror(msg) char *msg;
{printf(stderr,"%s\n",msg);}

The parser attempts to recover by the following method: It removes the top
states from the state stack until it finds a state from which a shift of the token
"error" is legal. It then pretends to find the "error" token and enters error mode.

It will remain in error mode until it has successfully recognized three consecu-
tive tokens. While in error mode, if it detects another error, it will throw away
the current token without generating an error message.

Panic mode error recovery can use such constructs as

statement:
...
| error ';'
...
;

If the parser is within a statement when it discovers an error, it will come back
to this state, pretend to read an error token, and look for a semicolon next. Since
it is in error mode, it will keep reading tokens from the input and throwing them
away until it finds a semicolon.

Parser’s error recovery

Copyright © 1999. Thomas W. Christopher 35

The user should never use "error" as a legitimate token in the program: it might
confuse the error recovery algorithm. For a more elaborate error recovery, Fig-
ure 3 on page 35 shows some commands that can be put into yyerror.

To summarize, Yacc requires its user to modify the grammar and perhaps pro-
gram some of the error recovery semantic actions using commands to control
the parser itself. Yacc doesn’t repair errors, but only recovers from them.

4.3 Possible improvements in TCLLk

Burke-Fisher5 error recovery for non-interactive systems would improve
TCLLk far beyond the state of the LALR(1) art. It also allows much smaller
parsers than LALR(1).

4.4 Conclusion

For error recovery, TCLLk currently has the advantage over Yacc, being both
easier to use and doing more. It also allows further improvements such as
Burke-Fisher error recovery.

causes the parser to pretend it has accepted the entire
input: yyparse returns 0.

tells the parser to clear its look-ahead token which it had
read from the scanner. If you are reading ahead yourself
(calling yylex), you must tell the parser to forget the last
token it read and read a new one.

tells the parser to resume normal parsing mode (even
before recognizing three successive tokens).

causes the parser to behave as if it detected an error.YYERROR

yyerrok;

yyclearin;

YYACCEPT;

Figure 3 Yacc commands to aid in error recovery.

5.Burke, Michael, and Fisher, Gerald, Op. cit.

TCLLk Parser Generator

36 Copyright © 1999. Thomas W. Christopher

Chapter 5 Finding bugs in grammars

5.1 Currently

Fischer and LeBlanc asserted that the LL(1) parsing algorithm is simpler than
LALR(1)’s. Since this makes it easier to understand what is going on, LL(1)
makes it easier to debug grammars, i.e. make them acceptable to the parser gen-
erator. This may be true for LL(1), but it is not true for TCLLk.

TCLLk’s error diagnosis stinks.

TCLLk will report if any symbols cannot be derived from the start symbol. It
will report if any nonterminals do not appear to generate finite strings of termi-
nal symbols. It will report if the same nonterminal is both left and right recur-
sive, making the grammar ambiguous. It will report if two or more right hand
sides derive the empty string, another source of ambiguity.

Unfortunately, most of the errors reported are that

• factoring required more iterations than were permitted. Default is three
iterations for the same nonterminal. It can be set to n by the command-
line flag -fn.

• more than k symbol look-ahead was required. Default is 2. It can be set
to n by the command-line flag -kn.

TCLLk is able to spew out volumes of information about intermediate gram-
mars, but by the time the errors are reported, the grammar has been so rewritten
that it is difficult to figure out what went wrong.

The best advice is to start with a subgrammar and add a few productions at a
time. Errors then involve the new productions that were added. The TCLLk
parser generator is so fast that there is no reason not to pass the grammar
through it repeatedly.

The state of the art in reporting grammar errors in LALR(1) parser generators
isn’t that great, but it is better than TCLLk.

5.2 Possible improvements

TCLLk’s diagnostics have not been the subject of much research yet, which can
explain why they are poor. How might they be improved?

Finding bugs in grammars

Copyright © 1999. Thomas W. Christopher 37

TCLLk can keep a data base on each transformation it performs, keeping track
of why each nonterminal and production was created.

Just spewing out the history of the grammar productions that cause problems
might swamp the user in too much information, but an interactive system could
let the user browse and explore. Common patterns of grammar problems could
be built in, allowing the system to make suggestions in many cases.

If nothing else, the experience of building and using an interactive parser devel-
opment system would be instructive.

TCLLk Parser Generator

38 Copyright © 1999. Thomas W. Christopher

Chapter 6 Conclusions

We have compared TCLLk and LALR(1) parser generators with respect to four
criteria:

1. Generality. How much work is required to get the grammar into a form
the parser generator will accept?

2. Parser size and speed. What is the quality of parsers produced? How
large are the parsers that it generates? How fast will they run?

3. Parser error recovery. How good is the parser’s error recovery?

4. Diagnosis of grammar problems. How much aid does the parser gen-
erator give in debugging grammars?

To repeat what we concluded:

Generality. Neither TCLLk nor LALR(1) is a complete winner in generality of
programming language grammars accepted, since each can handle grammars
the other can not. However, several things suggest TCLLk’s superiority:

• TCLLk’s can handle grammars that cannot be handled by various LR al-
gorithms.

• TCLLk can use greater than one symbol look-ahead,

• Converting the Java grammar from LALR(1) to TCLLk was painless.

TCLLk looks like it will require less effort to use than LALR(1) parser genera-
tors. This conjecture is unprovable mathematically and is not a good candidate
for a controlled experiment, but it may be possible to reach a consensus on it.

Parser size and speed. TCLLk can be expected to produce much smaller parser
tables than LALR(1). In speed, both are linear time parsers. TCLLk’s look-
ahead shouldn’t intrude much.

Parser error recovery. TCLLk’s parser error recovery is superior to LALR(1).
Adding Burke-Fisher error recovery can make it spectacularly better then LA-
LR(1).

Diagnosis of grammar problems. TCLLk currently has very poor diagnostics.
This area hasn’t been researched yet, so there is the possibility for dramatic im-
provements.

Conclusions

Copyright © 1999. Thomas W. Christopher 39

Overall. TCLLk’s parser generation algorithm is already competitive with LA-
LR(1) and is likely to become much better. We speculate that TCLLk will even-
tually replace LALR(1) in actual use.

TCLLk Parser Generator

40 Copyright © 1999. Thomas W. Christopher

