TCLLk vs. LR Parsing:
A preliminary comparison

Thomas W. Christopher

Tools of Computing LLC
P.O. Box 6335
Evanston IL 60204-6335
http://www.tool sof computing.com

Tools of Computing LLC
Technical Report
1999-3-#3-TC
March 20, 1999
[revised March 31, 1999]

TCLLk Parser Generator

Copyright © 1996, 1999 by Thomas W. Christopher

This document revised 3/31/99.

Y ou may reproduce this document in its entirety for personal use with the TCLLK parser gen-
erator. For educational use at a nonprofit institution, you may reproduce this document for the
students provided you inform the author of the course name and number, the institution name
and address, and provide electronic links (instructor’s e-mail and course home page URL) to
be posted on the web. Send the listing to the author at the address or URL given below.

Any other uses of this document, such asincorporation in aderived work or acompilation, re-
guire written permission.

The TCLLK parser generator itself is public domain. Sinceitisin the public domain, it may be
copied and used without restriction. The author makes no warranties of any kind as to the cor-
rectness of TCLLK or its suitability for any application. The responsibility for the use of the
program lies entirely with the user.

To contact the author
Thomas Christopher
Tools of Computing LLC
P.O. Box 6335

Evanston IL 60204-6335
USA

tc@tool sof computing.com
http://www .tool sof computing.com

To obtain a up-to-date copy of this document and the TCLLKk parser generator

http://www .tool sof computing.com/freesoftware.htm

Acknowledgments

Some of thework on TCLLk wasdoneat Illinois|nstitute of Technology, where
the author is an Associate Professor.

Copyright © 1999. Thomas W. Christopher

Table of Contents

LISt Of FIQUIES . . oo e I
List Of Tables. . ..o iii
SUMMIAIY . .ttt e e e et e e e e et e e e e \
FOrewWord vi
The competition between LL and LR i 7
GrammarSacCeptedt e 10
Sizeand speed of generated parserS. . ..o e 22
Par SEr S B T Or TECOVEN Y .ottt it ettt e et e e 32
Findingbugsin grammars it e 36

CONCIUSIONS . . . oo 38

TCLLk Parser Generator

List of Figures

Figure 1 Parse table sizes (approximated).

Figure 2 Sizes of TCLLK' strandations of Huge LR grammar

Figure 3 Yacc commandsto aid in error recovery

List of Tables

Table 1 C assignments, NQLALR(L) butnot SLR(1).., 12
Table2 LALR(1) but not NQLALR(D).. ..o vv e e 14
Table3 LR(O) item setsfortheLR(1) grammar.., 16
Table 4 Initial size of theJavagrammar., 17
Table5 Javagrammar through TCLLK. e 20
Table6 Increasein grammar SIZe.ottt e 23
Table 7 LALR(1) parsers generated from TCLLk-accepted grammars. 24
Table 8 Percent utilization of parsetables.. i 25
Table9 BackupsinJavafiles. 27
Table 10 Backupsin Java files with nonterminal ImportName.. 28

TCLLk Parser Generator

Summary

This paper isa preliminary comparison of the TCLLk parser generator and its
algorithms to its main competitor, LALR(1). We seek the answer to this ques-

tion:

What isthe likelihood TCL LK’ s parser generation algorithm will be prefer-
ableto LALR(1)?

We compare on four criteria:

1.

3.
4.

How much work is required to get the grammar into aform the parser
generator will accept?

What isthe quality of parsers produced? How large are the parsers that
it generates? How fast will they run?

How good is the parser’ s error recovery?

How much aid does the parser generator give in debugging grammars?

Our answersto these questions are:

1.

4.

TCLLk requires aslittle work to prepare grammars as LALR(1). Possi-
bly less.

The quality, size and speed, of parsers produced isbetter than LALR(1).
The size can be significantly lessby using TCLLk’s - d command line
parameter.

Theerror recovery iseasier and better than Y acc, and can be made much
better.

Good diagnostics have not been developed yet for TCLLK.

We concludeitislikely that TCLLK’s Strong L L(K) algorithmswill prove pref-
erableto LALR(1).

Copyright © 1999. Thomas W. Christopher V

TCLLk Parser Generator

Foreword

This paper assumes you know something about algorithmsfor generating LL (1)
and LALR(1) parsers. It also assumes you know something about TCLLK.
TCLLKk documents are available at

http://www.tool sof computing.com/freesoftware.htm
See particularly the documents:

» Thomas Christopher, A Strong LL(k) Parser Generator That Accepts
Non-LL Grammars and Generates LL(1) Tables, Technical Report
1999-3-#2-TC, Tools of Computing, March 12, 1999.

e ThomasW. Christopher, User Manual for TCLLk: A Srong LL(K) Pars-
er Generator and Parser, Technical Report 1999-3-#1-TC, Tools of
Computing LLC, March 12, 1999

This presentation is incomplete. | should look up some references. Some infor-
mation | am repeating from memory. (I'm sure readerswill point out the bugs.)

| decided that it ismoreimportant to get thisinformation out quickly thanto per-
fect the presentationfirst. I’ || be fixing the problemsin later releases of thisdoc-
ument.

Availability. TCLLk isavailable from Tools of Computing LLC at
http://www.tool sof computing.com/freesoftware.htm

The current version (20 Mar 1999) isan alphaversion on the verge of becoming
beta. It iswritten in the lcon programming language for use with acompiler wit-
tenin lcon. We (George Thiruvathukal and) are preparing a postpass to gen-
erate parsersin Java, although we have no interest whatsoever to rewrite the
parser generator itself.

-Thomas Christopher

Vi Copyright © 1999. Thomas W. Christopher

The competition between LL and LR

Chapter 1 The competition between LL and LR

In this paper we are considering the TCL Lk parser generator and the suitability

of itsalgorithm for usein practical compilers. TCLLk isa Strong LL(k)1 parser
generator. When given an LL (1) grammar, it generates an LL (1) parser, so it
subsumes LL(1).

Both LL and LR style parsing require deterministic context free grammars.
They both parsein linear time.

The competition between them regarding which is the better algorithm is often
expressed as “Which is more power ful?” Phrased properly, that question is sus-
ceptible to a mathematical treatment. It can be translated into “Which takes a
larger class of languages?’ or better, “Which can handle al the languages the
other can and more?’ Thisdoes not mean, “Which can handle the grammarsthe
other one can?’ Y ou may have to find a different grammar for the same lan-
guage. However, the real question defies a mathematical solution. The real
guestion is, “Which is most convenient for the compiler writer?’ Or, “What is
the difference in the quality of parsers produced by these algorithms?’

Fischer and LeBlanc in their textbook, Crafting a Compil er?, consider the gues-
tion based on five criteria:

1. Simplicity. They point out that the underlying parsing algorithm may
intrude on the user of a parser generator while the user isdebugging his
or her grammar. They conclude that LL (1) is better than LALR(1) by
thiscriterion, sinceits underlying conceptsare easier to understand. We
will consider thisin Chapter 5, Finding bugs in grammars, on page 36.

2. Generality. We areinterested in
* how many grammars can the algorithms can handle?
» can one handle the grammars the other one can and more?’

» istheagorithm powerful enough to handle all the interesting gram-

LThe* Strong” in its name refersto its method for computing | ook-aheads of more than one
symbol. It's not as “powerful,” does not accept as many grammars, as afull LL(k) parser
generator.

2 CharlesN. Fischer and Richard J. LeBlanc, Jr., Crafting a Compiler, Section 6.11 “LL(1)
or LALR(2), That Isthe Question,” The Benjamin/Cummings Publishing Company, 1988.
They may have changed this section in more recent editions.

Copyright © 1999. Thomas W. Christopher 7

TCLLk Parser Generator

mars, i.e. programming language grammars?

They point out that while LL(1) and LALR(2) in practice are capabl e of
handling most programming languages, programming language defini-
tionsarelikely to comewith LALR(1) grammars, not LL (1), and that it
takes considerable effort to convert the grammarsinto LL (1) form.

They give LALR(1) the advantage over LL(1) by this criterion.

3. Action symbols. The question hereis“How flexibleis the interface to
semantics routines?’ LL(1) can call an action routine anywhere during
the recognition of aright hand side of a production. LR algorithms can
only call action routines while reducing aright hand side to a left hand
side. However, LALR(21) can call actionsin the same placesby asimple
transformation of the grammar, and many LALR(1) parser generators
(e.g. YACC) will do the transformation themselves. LL(1) hasonly a
dight edge here.

4. Error repair. Which parsers are better at recovering from or repairing
errorsin theinput sentence? LL parsers have a stack of what symbolsit
expectsto recognize later in theinput, while LR parsers have a stack of
statesthey werein earlier inthe parse. The information LL parsers have
ismuch easier to use to make good repairs. LL has a distinct advantage
here.

5. Tablesizes. How large are the parsing tables? Let |N| be the number
nonterminal symbols, |T| be the number of terminal symbols, |P| be the
number of productions, L be the sum of the lengths of the productions,
and S be the number of statesin an LR parser.

e LL(2) parsersrequire an uncompressed table size of |N|x|T| + L.

* LALR(2) requires an uncompressed table size of Sx(|N|+[T|)+2x|P).
In theworst case, LALR(1) can require as many as O(2%) states,
making it totally unusable. They estimate, however, that in practica
cases the number of states as about the same as the number of pro-
ductions and the number of productions as about two per nontermi-
nal.

They estimate that the average caseratioof LALR(1) tablesizetoLL(1)
tablesizefor typical programming languages, counting the differencein
sizesof LL(1) and LALR(1) grammarsfor the samelanguage and count-
ing compression of thetables, is about 2 to 1. Overall, they give the ad-
vantageto LL(21).

In summary, in every way but in generality of grammars accepted, LL (1) is at
least as good as LALR(1), or better.

Following Fischer and LeBlanc, we will discuss the convenience of TCLLk in
comparison to LALR(1). Wewill try to answer these questions:

1. How much work is required to get the grammar into aform the parser

8 Copyright © 1999. Thomas W. Christopher

The competition between LL and LR

generator will accept?

2. What isthe quality of parsers produced? How large are the parsers that
it generates? How fast will they run?

3. How good isthe parser’s error recovery?
4. How much aid does the parser generator give in debugging grammars?

Some of these questions require qualitative answers and so are not easily for-
malized. We will consider each below.

Copyright © 1999. Thomas W. Christopher 9

TCLLk Parser Generator

Chapter 2 Grammars accepted

2.1 The LL/LR competition

No linear-time parsing algorithm will work with all context-free languages. In
general it takes about cubic timeto parse arbitrary context free languages. (Just
abit lessin theory.)

So we can’'t expect an arbitrary language to be acceptable to either style parser
generator. Worse yet, they place restrictions on the grammars they take. It can
take alot of work to manipulate agrammar into an acceptable form.

LL parser generators have traditionally been the losers on work required to ma-
nipulate its input grammar. Traditionally, the user has had to do left recursion
removal and factoring. LR parser generators require neither.

TCLLk, however, does both left recursion removal and factoring itself, so that
isno longer an advantage for LR parser generators.

What about generality of languages accepted? LR(1) parsers have been shown
capable of parsing any deterministic context-freelanguage. No LL (K) is, for any
size k. Indeed, LL (1) is not as powerful asLL(2), nor in genera isLL(Kk) as
powerful as LL (k+1), and all of them are less powerful than LR(1).

Hereisakiller grammar that is LR but not LL (k) for any k:

Non-LL gramrar
start = A | B
A=x Ay | x
B=xBz| x.

The problem for LL parsers? It may see an arbitrary number of x’s before dis-
covering, by seeing ay or az, whether itsseeing an A or aB. LL hasto know
at the beginning.

Here' swhat TCLLk reportsfor it:

D:\ Parsers\LLK>tcl | k nonl |

War ni ng: nore than one enpty RHSfound whil e factoring
"start: 103"

Error: factoring "start: 106" requires search of nore
than 3 iterations

1 error and 1 warning

10 Copyright © 1999. Thomas W. Christopher

2.2

Grammars accepted

But the real question is more qualitative. “For programming language gram-
mars, is there a significant advantage for either LL or LR parsers, or are they
about equivalent?’ The above grammar may not be typical of those we need to
handle.

There is aso another consideration: Full LR(1) parsers are not used because
thelr table space is much too large. We use some more restricted version,
SLR(1), NQLALR(1) ak.a. SLALR(1), or LALR(1). What’ s the difference?
All of these use LR(0) parsing tables with some tricks for handling |ook-ahead.
The parsing tables for LR parsers have one row for each state the parser can be
in and a column for every terminal and nonterminal symbol. The number of
statesfor LR(0) parsersis much smaller thanfor LR(1). Unfortunately, the few-
er states make it impossible to keep as accurate |ook-ahead information as
LR(1).

These are the tricks the practical LR algorithms use for |ook-aheads:

SLR(1) —“smpleLR(1)” usesthe symbolsinthe Follow setsto choosethe
action to take in “inadequate states.”

LALR(1) — “look-ahead LR(1)” uses all the information available in the
graph of LR(0) states.

NQLALR(1) — “not quite look-ahead LR(1)” ak.a. SLALR(1), “smple
look-ahead LR(1),” are attempts to implement LALR(1). They contain
abug that everybody reinvents when they first attempt to implement
LALR(2).

LALR(2) isbetter than either of the others, but NQLALR(1) isnot always better
than SLR(1) nor vice versa. LR(1) ismore powerful than al of them, but of
course, isn't used because of its space requirements.

Theideathat LALR() is better than LL (k) comes from three sources:

1. Asmentioned, LALR(1) parser generators have in the past required less
work from the user to get grammarsinto an acceptable form. Thisisno
longer the case with TCLLK.

2. Thereistheexample non-LL grammar for which LR isclearly superior.
Indeed, that grammar is accepted by SLR(1) parsers generators. It may
not be representative, however.

3. LR(2) is better than LL (k) for al k. However, we don't use LR(1). We
just assume that because it is more powerful, its simplifications will be
aswell. Thisis not warranted. There are grammars that TCLLk will ac-
cept that none of the simplified LR parserswill.

Testing TCLLk against LR grammars

There are anumber of classic grammars that show the differences between var-
iousL R parser generators. We tried them on TCL Lk to see about where TCL Lk
fitsamong the LR parsing algorithms. Asit happened, TCL Lk handled them all

Copyright © 1999. Thomas W. Christopher 11

TCLLk Parser Generator

with no problems. It didn’t even have to resort to look-ahead of more than one

221

symbol.
Non-SLR(1) but NQLALR(1)

Hereis agrammar taken from the C programming language assignment state-

#Lval ue.grm - -
taken from C assignnent statenents.

start = S ECF.

S = lvalue "=" expr.
S = expr.

| value = 1i.

| value = "*" expr
expr = |val ue.

This grammar is not SLR(1). Upon encountering

* 0

Table 1 C assignments, NQLALR(1) but not SLR(1).

expr — lvalue.

Item set 3:
S o expr.

Item set 4:
Ivalue - i .

S - lvalue .= expr Successors:

[tem set O:
S - .SEOF Successors: [tem set 5:
S - lvaue=exprS=1 Ivalue - * .expr Successors:
S - .expr Ivalue = 2 expr - .lvalue expr = 8
Ivalue - .i expr = 3 Ivalue - .i lvalue = 9
lvalue - *expr i=4 Ivalue - *expr i=4
expr — .vaue *=5 *=5
Item set 1:
S - S.EOF Successors: [tem set 6:

EOF = 6 S - SEOF.
[tem set 2: [tem set 7:

S - lvalue = .expr Successors:

==7 expr - .lvalue expr = 10
Ivalue - .i lvalue =9
lvalue - *expr i=4

*=5

Item set 8:
Ivalue - * expr .

Item set 9:
expr - lvaue.

Item set 10:

S - lvaue=expr.

12 Copyright © 1999. Thomas W. Christopher

Grammars accepted

inthe input, a SLR(1) parser first recognizes an Ivalue, but it can’t decide
whether to convert it to an expr or to leaveit an Ivalue. The inadequate item set

is
|tem set 2:
S - lvalue .= expr
expr - lvalue .
Successor: = =7

If the parser sees“=" next, it should leave thelvalue asan Ivalue, which is need-
ed for the left side of an assignment expression, and read past the “=" going to
state 7. If it sees an EOF, it should convert the lvalue to an expr.

Unfortunately, SLR(1) knows that both “=" and EOF can follow an expr, so it
can’'t decide whether to reduce the lvalue to an expr when it seesan “=".

Both LALR(1) and NQLALR(1) can seefrom context that inthat state, it should
only reduce the lvalue to an expr if it sees an EOF.

What happens when we pass this grammar through TCLLK?

D:\ Parsers\LLK>tcl I k | val ue
O errors and O warni ngs

We' ve added some action symbolsto the grammar to seewhat TCL Lk isdoing.
Here sthe grammar:

#Lval ue.grm - -

taken from C assi gnnent statenents.
start = S ECF.

S = lvalue "=" expr Pl!.

S = expr P2!.

| value =1 P3!

| value = "*" expr P4!

expr = |value P5!.

Here' swhat TCLLKk convertsit into:

S =1lvalue "S:101".

"S: 101" = "=" expr P1.
"S: 101" = P5 P2.

expr = |value P5.

| value =1 P3.

| value = "*" expr P4.

start = S EOF.
2.2.2 LALR(1) but not NQLALR(1)

Here sagrammar from DeRemer and Pennello that isLALR(1) but not NQLA-
LR(1).

LALR(1)
start = S .

Copyright © 1999. Thomas W. Christopher 13

TCLLk Parser Generator

WL

Its LR(O) item sets are shown in Table 2 Its inadequate sets are 6 and 9. In set
6, the parser should reducethegto aB if it seesc next. Set 6 is only entered
from set 2, where if g isreduced to B, the B will be reduced to an A, and the A
will be followed by a c. Similar reasoning applies to set 9. The parser should
reducethegto aB if it seesd next. Set 9isonly entered from set 3, where after
the reductions of g to B and B to A, the A will be followed by ad.

Table 2 LALR(1) but not NQLALR(1).

Item Set 0:00 Item Set 6:
S - .S Successors. S-agd Successors.
S - .aAc S=1 B-g. d= 11
S - .agd a=2
S - bAd b=3 Item Set 7:
S - bgc A-B.
Item Set 1: Item Set 8:
S - S.0 Successors: S-bAd Successors:
O0=4 d=12
Item Set 2: Item Set 9:
S -aAc Successors: S - bg.c Successors:
S - a.gd A=5 B-g. c=13
B -.0 B=>7 Item Set 10:
S - aAc.
Item Set 3:
S - b.Ad Successors: Item Set 11:
S - bugc A=28 S - agd.
B -.9 B=7 Item Set 12:
S - bAd.
Item Set 4:
S - SO. Item Set 13:
S - bgc.
Item Set 5:
S aAc Successors:
c=10

NQLALR(2) fails because, while searching backwards from set 6, reducing to
B will take it to set 7. NQLALR(1) will then search back from set 7 to al its

predecessors, seeing that the reduction of B to A will read a c next when it goes
through set 2 and a d next when it goes through set 3. It decides that both ¢ and

14 Copyright © 1999. Thomas W. Christopher

Grammars accepted

d can follow the B in set 6, so d won’t choose whether to shift to set 11 or to
reduce. (Similar reasoning appliesto set 9.) NQLALR(1)’sfailure comesfrom
not remembering what set it arrived at set 7 from.

So anyway, what does TCLLk do with it? Here' s the command line and re-

sponse:

D:\Parsers\LLK>tcllk lalrl
O errors and O warni ngs

Here' sthe trandated grammar:

S =a "S 101".

S=Db "S: 102".

"S: 101" =g "S:103".
"S: 102" =g "S:104".
"S: 103" = d P2.
"S:103" = P6 P5 ¢ P1.
"S: 104" = c P4.
"S:104" = P6 P5 d P3.
start = S

2.23 LR(1) but not LALR(1)

Here' sagrammar that is LR(1) but not LALR(L):

OTMmWunmnn

—+

The item sets are shown in Table 3. | won’t bother to explain thisone. Here's
what TCLLk doeswithit:

D:\Parsers\LLK>tcllk Irl
0O errors and O warni ngs

Yielding the translated grammar:

S
S
"S:
"S:
"S:
"S:
"S:
"S:
sta

a "S:101".
b "S:102".
101" =f "S:
102" =f "S:
103" = P5 c
103" = P6 d
104" = P5 d
104" = P6 c

rt = S

103".
104".
P1.
P2.
P3.
P4.

Copyright © 1999. Thomas W. Christopher 15

TCLLk Parser Generator

Table 3 LR(0) item sets for the LR(1) grammar.

Item Set O: Item Set 6:
S - .SEOF Successors: S-aFd Successors.
S - .aEc S=1 d=>11
S - .aFd a=2
S- bEd b= 3 Item Set 7:
S bFc E - f.
Item Set 1:
S - S.EOF Successors: Item Set 8:
EOF =4 S-bE.d Successors:
d=12
Item Set 2:
S-akEc Successors: Item Set 9:
S- a.Fd E=5 S-bF.c Successors:
E- f F=6 c=13
Item Set 10:
Item Set 3: S aEc.
S-b.Ed Successors:
S-b.Fc E=8 Item Set 11:
Item Set 12:
Item Set 4: S- bEd.
S = SEOF.
Item Set 13:
Item Set 5: S-bFc.
S aE.c Successors:
c=10

2.3 Javagrammar

For atest of TCLLK against LALR(1) for apractical language, we cut and past-

ed an LALR(1) Java 1.1 grammar from The Java L anguage Specificati on® and
reworked it to be acceptableto TCLLk. The authors of the Specification discuss
the problemsthey had in converting their Javagrammar to LALR(1) form. Here
we discuss the difficulties we had converting their LALR(1) grammar for
TCLLK suse.

2.3.1 Putting the grammar into TCLLK syntax

We had to do afew cosmetic changes on their grammar. We passed the file
through asmall Icon program to change its syntax. By hand we changed their
“oneof” production form into aseries of productions. We had the | con program

3.James Godling, Bill Joy, Guy Steele, The Java Language Specification, available from
www.javasoft.com.

16 Copyright © 1999. Thomas W. Christopher

2.3.2

2.3.3

Grammars accepted

create productions for all the symbols whose names end in “opt” indicating op-
tiona. Theinitia size of the Java grammar is shown in Table 4.

Table 4 Initial size of the Java grammar.

number of nonterminals: 160

number of productions: 331

number of symbols on right hand sides: 603
TCLLK reported errors:

9 errors and O warni ngs

Dangling else

Javahasadangling else clause. LL parser generators haveto give dangling el ses
special treatment. LR parser generators can handle them in the grammar, so
that’ s what the Gosling €t al. did.

They put in anumber of nonterminals with names containing “NoShortlf”, e.g.
StatementNoShortlf. Short ifsareif-statementswithout el se-clauses. Theruleis
that an if statement with an else clause cannot contain an if statement without
an else before its el se, as shown by these productions for if statements:

| f ThenStatenent = if "(" Expression ")" Statenent
| f ThenEl seStatenment = if "(" Expression ")"
St at ement NoShort | f el se Stat enent

| f ThenEl seSt at emrent NoShort!If = if "(" Expression ")"
St at enent NoShort | f el se Statenment NoShortl!f

TCLLk can handle if-statements without this syntax, and it cannot handle them
with it. We removed the “Noshort | f 7 versions of statements, asimplification
of the grammar that removed nine productions.

Assignment expressions

TCLLk complained about the number of factorings needed and about |ook-
ahead depth being exceeded. The complaintsinvolved various levels of expres-
sions.

We started with Primary and related nonterminals and added more expressions
toit, running it through TCL LK, looking for where the problems occurred. The
errors occurred when A ssignmentExpression was added.

One of the nasty constructs for LL parsersis assignment expressions. The left
hand side is usually some low level of expression. In Java:

Assi gnnent Expressi on = Conditi onal Expression .
Assi gnnent Expressi on = Assi gnhnent
Assi gnnent = LeftHandSi de Assi gnnent Oper at or

Assi gnnent Expressi on .

Copyright © 1999. Thomas W. Christopher 17

TCLLk Parser Generator

Lef t HandSi de
Lef t HandSi de
Lef t HandSi de

Nanme .

Fi el dAccess .

ArrayAccess .

A Condi ti onal Expr essi onisahighlevel of expression, which canbeginwith
the samekinds of thingsasLef t HandSi de. Deep factoring isrequired to handle
Assi gnment Expr essi ons— replacing nonterminals with their right hand sides
repeatedly until factoring is possible.

TCLLK tried deep factoring, but for whatever reason, it didn’t work. We resort-
ed to atrick often used when building parsers: we replaced the definition of As-
si gnment with:

Assi gnnment = LeftHandSi de Assi gnment Oper at or
Assi gnnent Expr essi on .

Left HandSi de = Condi ti onal Expression .

Thiswill accept syntactically illegal constructs, but we can reject them in the
semantics routines (easily, if we build atree and generate code fromit). This
worked.

We then experimented with alower level of expression:
Left HandSi de = Postfi xExpressi on.

which also worked. Thisled to athird version. We replaced the definition of
Post f i XExpressi on:

Post f i XExpr essi on
Post f i XExpr essi on
Post f i XExpr essi on
Post f i XExpr essi on

Primary .

Name .

Post | ncr enent Expr essi on .
Post Decr enent Expr essi on .

Post | ncrenent Expressi on = Postfi xXExpression
n ++ll .
Post Decr enent Expressi on = Postfi xXExpression

with

Postfi xExpression = NanmeOPrimary .

NameOrPrimary = Primary .

NameOr Primary = Nane .

Post fi xExpressi on = Post | ncrenent Expression .

Post fi xExpressi on = Post Decr enent Expr essi on .

Post | ncrenent Expressi on = Postfi xExpression
"

Post Decr enent Expressi on = Postfi xXExpression

and replaced the definition of Lef t HandSi de:
Left HandSi de = NaneOrPrinmary.

18 Copyright © 1999. Thomas W. Christopher

Grammars accepted

This also worked, and thisis the grammar we kept.
2.3.4 Switch bodies
The final problem was with switch statements. Their syntax is

SwitchStatement = switch "(" Expression ")" SwitchBl ock .

SwitchBlock = "{" Swi tchBl ockStat ement G- oupsopt
Swi t chLabel sopt "} "

Swi t chBl ockSt at ement Groups = Swi t chBl ockSt at emrent Group .

Swi t chBl ockSt at ement Groups = Swi t chBl ockSt at enent Gr oups
Swi t chBl ockSt at ement Group .

Swi t chBl ockSt at ement Group = SwitchLabel s Bl ockSt atenents .
Swi t chLabel s = SwitchLabel

Swi t chLabel s = SwitchLabel s SwitchLabel

Swi t chLabel case Constant Expression ":"

Swi t chLabel o

def aul t

The problem was Swi t chBl ockSt at ement Gr oupsopt followed by Swi t chLa-
bel sopt . The Swi t chBI ockSt at ement Gr oupsopt can begin with Swi t chLa-
bel s or can be empty. Similarly, swi t chLabel sopt can begin with
Swi t chLabel s or can be empty. Thetwo in arow confused TCLLK.

We used TCLLK’s extended input syntax to solve the problem:

SwitchBlock = "{" {Sw tchBl ockSt at ement G oup}
Swi t chLabel sopt "} "

TCLLK’ sinput translates thisinto the following productions:

SwitchBlock = "{" SwitchBl ock 2 20.
Swi t chBl ockSt at enent Group = SwitchLabel s Bl ockSt at enent s.
SwitchBl ock_2 20 = Swi tchLabel sopt "}".

Swi tchBl ock_2 20 = Swi tchBl ockSt at ement Gr oup
Swi t chBl ock_2 20.

Swi t chLabel = case Constant Expression ":".
Swi t chLabel = default ":".

Swi t chLabel s = Swi t chLabel .

Swi t chLabel s = Swi tchLabel s Swi tchLabel .
Swi t chLabel sopt = Swi tchLabel s.

Swi t chLabel sopt
Swi t chSt at enent

switch "(" Expression ")" SwitchBl ock.

The essential part of the trandationis Swi t chBl ock_2_20. The smplest trans-
lation of arepetitive form, { x} , would yield a nonterminal, A, and two right
hand sides. Oneright hand sidewould be x A and the other one would be emp-

ty.

Copyright © 1999. Thomas W. Christopher 19

TCLLk Parser Generator

Here the empty alternative has been replaced by the part of the Swi t chBI ock
following it, i.e. Swi t chLabel sopt "}". Thisallows TCLLKk to use factoring.
TCLLKk converted it to:

SwitchBlock = "{" SwitchBl ock_2_20.

SwitchBlock 2 20 = SwitchLabels "SwitchBl ock_2 20:102".
SwitchBlock_2 20 = "}".

"SwitchBl ock_2_20: 102" = "}".

"SwitchBl ock_2 20:102" = BlockStatenments SwitchBl ock_2 20.
Swi t chLabel = case Constant Expression ":"

Swi t chLabel = default ":*"

Swi t chLabel s = SwitchLabel "SwitchLabel s:101".

"Swi tchLabel s: 101" = SwitchLabel "SwitchLabels:101".

"Swi t chLabel s: 101" =.

SwitchStatenment = switch "(" Expression ")" SwtchBl ock.

TCLLk found no further problems with the Java grammar.

Overadl, there was not much work in converting an LALR(1) grammar to
TCLLk using the default limit of 3 factorings per nonterminal and a2 symbol
look-ahead.

Table 5 showsthe figures for the Java grammar before and after these by-hand
transformations and after TCLLKk got through with it.

Table 5 Java grammar through TCLLKk.

Original Input to After
LALR(1) | TCLLk TCLLk

nunber of nonterm nal s: 160 155 196
nunber of productions: 331 312 587
nunber of synbols on 603 561 1303

ri ght hand si des:

How long does TCL Lk take to build and write out parse tables for Java? When
executed in the command file:

witetinme
tcll k Java
witetinme

the difference between the two timeswritten is usually 8 seconds (occasionally
7) on a200 MHz Pentium PC running WindowsNT. A more careful experiment
could be done easily, but it doesn’t seem worth it: The execution timeistrivial.

20 Copyright © 1999. Thomas W. Christopher

24

2.5

Grammars accepted

Possible improvements in TCLLk

When fixing switch bodies in the Java grammar, we used the grammar input
transformation to push atail of an enclosing production into a subproduction,
allowing factoring. Thistransformation can be used to handle nonterminalsthat
have a conflict between the follow set for an empty production and the first set
for some other right hand side. Currently thisis always handled by building
look-ahead trees that search beyond the end of the right hand side. With this
transformation, these nonterminals can sometimes be handled by factoring.

With this transformation, we would not have had to rewrite the definition of
switch statements.

Overall

TCLLk appearsto be as convenient to prepare grammarsfor as LALR(1) parser
generators. This conjecture is not susceptible to mathematical proof, nor per-
haps experimentation, but it is possible to reach some consensus on with broad-
er use of TCLLk or other parser generators using its algorithm.

Copyright © 1999. Thomas W. Christopher 21

TCLLk Parser Generator

Chapter 3 Size and speed of generated parsers

3.1

Fischer and LeBlanc’s estimates

Torecall Fischer and LeBlanc’ sdiscussion on the size of the parsing tables. Let
IN| be the number nonterminal symbols, |T| be the number of terminal symbols,
|P] be the number of productions, L be the sum of the production lengths, and S
be the number of statesin an LR parser.

* LL(2) parsersrequire an uncompressed table size of |N|x|T| + L.

* LALR(2) requiresan uncompressed table size of Sx(|N|+[T])+2x|P). In
theworst case, LALR(1) can require as many as O(2") states, making it
totally unusable. They estimate, however, that in practical casesthe
number of states as about the same as the number of productionsand the
number of productions as about two per nonterminal.

Of course, the size of an LL (1) grammar for a particular language is amost cer-
tain to be larger than the LALR(1) grammar one would use. Also, the parsing
tables are typically compressed.

They include these rules of thumb for estimating the sizes of programming lan-
guage grammars.

[Tl =INJ/2
IPl = 2x|N|
L = 7x|N|
S=|P

Only afraction of the total number of possible table entriesfor either LL(1) or
LALR(1) parsers are significant; the rest cannot be accessed while parsing a
correct program, so they indicate an error has been detected. By only represent-
ing the nonerror entries, parsers can save a great deal of space. Fischer and Le-
Blanc estimate that 10% of LL (1) tables are non-error entries, and 5% of
LALR(1) tables. Parser generators typicaly compress the tables. TCLLk does.

These approximations allow them to estimate parse table sizes as functions of
the number of nonterminals:

Sizeof LL(1) tables= 0.05x|NJ? + 7x|N]|
Size of LALR(L) tables= 0.15x|N]? + 4x|N|

22 Copyright © 1999. Thomas W. Christopher

3.2
3.2.1

Size and speed of generated parsers

The limiting ratio of LALR(1) sizeto LL (1) sizeis 3 for grammars of the same
size. That is not, however, the ratio for the same language, since we must also
consider that LL (1) grammars are larger than LALR(1) for the same language.

They estimate that the average caseratio of LALR(1) tablesizeto LL(1) table
size for typical programming languages, counting the difference in sizes of
LL(2) and LALR(1) grammars for the same language and counting compres-
sion of thetables, isabout 2to 1. For space required, they give the advantageto
LL(D).

Sizes of parsers

Translated sizes of several grammars

TCLLK, by trandating grammarsto LL (1) form (perhaps with backups) alows
us to start with one grammar, estimate the LALR(2) table size and compare to
the LL (1) table size for the same language.

The size of agrammar increases when TCLLk (with some programmer inter-
vention) trandates a grammar from LALR(1) formto LL (k). How much of an
increase can we expect? It isimportant; if we use Fischer’s and LeBlanc’sfor-
mulasfor LALR(1) and LL (1) table sizes and if we can estimate the growth in
grammar size, we can estimate whether TCLLK will produce smaller parsers
than an LALR(1) parser generator, or larger, or about the same size.

Table 6 givestheincrease in grammar size for anumber of grammars when con-
verted to LL(1) form by TCLLKk. It should give some indication of what expan-
sion can be expected. However, it is far from scientific. It doesn’t provide a
sample of programming language grammars, whatever that might be. Plus, the
initial grammarswere not perfectly LALR(1); Table 7 showsthe number of con-
flicts Bison discovered.

Table 6 Increase in grammar size.

Grammar Initial After TCLLK | Growth
C Nonterminals | 80 133 66.3%
Productions | 215 323 50.2%
Total RHS 401 599 49.4%
EULER Nonterminals | 33 46 39.4%
Productions | 94 111 18.1%
Total RHS 185 220 18.9%
EULER Nonterminals | 33 57 72.7%
(hand trans- Productions | 95 128 34.7%
lated by an
expert)

Copyright © 1999. Thomas W. Christopher 23

TCLLk Parser Generator

3.2.2

Table 6 Increase in grammar size.

Grammar Initial After TCLLK | Growth
Total RHS 262 326 24.4%
Icon Nonterminals | 48 75 56.7%
Productions | 155 297 91.6%
Total RHS 331 584 76.4%
Pascal Nonterminals | 37 46 24.3%
Productions | 84 93 10.7%
Total RHS 187 184 -1.6%
Java Nonterminals | 155 196 26.5%
Productions | 312 587 88.1%
Total RHS 561 1303 132.3%

With the exception or Java, there are no expansions of more than afactor of 2
in numbers of nonterminals, productions, or summed lengths of productions for
and language.

We passed the grammars through a trandation program to put themin Yacc
form and then passed them through Bison. Table 7 shows the number of shifts,
reduces, states, and conflicts Bison reported. Only the EULER grammar was
completely acceptable. The grammars with shift/reduce conflicts may produce
correct parsers; they can be caused by such things as dangling elses, and they
are resolved by shifting. The reduce/reduce conflict for the C grammar guaran-
teesthat it's LALR(1) parser isn’t correct.

Table 7 LALR(1) parsers generated from TCLLk-accepted grammars.

Grammar | shifts | reduces | states | shift/reduce | reduce/reduce
conflicts conflicts

C 2836 | 260 342 2 2

EULER 1833 | 96 165 0 0

| con 3429 | 162 270 7 0

Pascal 581 91 162 1 0

Java 4464 | 352 495 4 0

Compressed tables

Recall that only afraction of thetotal number of possibletable entriesfor either
LL(1) or LALR(1) parsers are significant; the rest, indicating input errors, can

24 Copyright © 1999. Thomas W. Christopher

Size and speed of generated parsers

be squeezed out to save space. Fischer and L eBlanc estimate that 10% of LL(1)
tables are non-error entries, and 5% of LALR(1) tables.

In TCLLK, even greater compression can be specified. The TCLLK parser hasa
selection table in which it looks up nonterminals and terminalsto decide which
right hand side to replace the nonterminal with. It also has a default table. If it
doesn’'t find the nonterminal/terminal pair in the selection table, it looks up the
nonterminal in the default table to seeif it isassociated with aright hand side
there. If thereisonly asingleright hand side for anonterminal, it will be in the
default table, not in the selection table; no matter what the next symbol is, the
nonterminal has to be replaced with that right hand side.

If the user specifiesthe -d flag to TCLLK, it will also use the default table for
the right hand side associated with the greatest number of look-ahead terminals.
Thiswon’t result inincorrect parsing; if the next terminal isn't correct, the pars-
er will never recognize it. Errors will be detected at the same point in the pro-
gram, but after several nonterminals have been replaced by their default right
hand sides. Alone, this loses information for error recovery, but it does save
gpace. TCLLK’ s parser, however, avoidsthe loss of information in amanner to
be discussed below. Table 8 shows the selection table occupancy without and
with the -d flag. It also showsthe occupancy of the LALR(1) parsing tablesfor
the grammars before they were transformed by TCLLKk.

Table 8 Percent utilization of parse tables.

Language TCLLKwithout-d | TCLLkwith-d | LALR(2)
flag.2 flag.P % occupied

C 11.2% 4.9% 55
Eul er 21.1% 2.6% 12.3
| con 15.3% 4.3% 10.1
Pascal 8.4% 3.1% 51
Java 11.5% 4.1% 3.8

a.Percent ot selection table utilized using default table only Tor single productions.

b.Percent of selection table utilized using default table for the most commonly selected
RHS.

The Fischer/LeBlanc estimate of 10% occupancy of LL (1) tables and 5% occu-
pancy of LALR(1) tables may be compared to these figures.

As mentioned, using the default table for the most common right hand side
could result in aloss of information for error recovery: for every nonterminal
expanded, i.e. replaced by aright hand side, the possibility of finding the other
right hand sidesislost. TCLLK’ sparser, however, doesn’t losethisinformation.
It uses atechnique taken from Burke-Fisher error recovery:

* When anonterminal is expanded, the nonterminal is placed in aqueue.

Copyright © 1999. Thomas W. Christopher 25

TCLLk Parser Generator

* When an action symbol is removed from the prediction stack, itisaso
queued.

* When aterminal is matched, the parser goes through the queue in FIFO
order, removing nonterminals and performing the queued actions.

* Anerror is detected when either aterminal on the top of the prediction
stack does not match the next symbol in the input or no right hand side
can be chosen for the nonterminal on the top of the stack. Upon encoun-
tering the error, the parser restoresthe state it was in just after matching
the previous terminal. It goes backwards (L1FO) through the queue re-
moving the actions and nonterminals and doing the following:

* it pushes each action symbol back on the prediction stack,

» for each nonterminal, it removes the nonterminal’ s right hand side
from the prediction stack and then pushes the nonterminal back on
the prediction stack.

Since the parser is able to reconstruct all the information it had before expand-
ing nonterminals, it has al theinformation it could have after matching the pre-
vious terminal. (Modifying the parser to also queue up a certain number of
terminals would allow the parser to back up to the state it was in before match-
ing the most recent one or more terminals. Thisisthe first step towards imple-
menting Burke-Fisher error recovery.)

3.2.3 Comparing TCLLk tables to LALR(1)

Figure 1 shows a comparison of parse table sizes. The LALR(1) sizes are com-
puted using Fischer’s and LeBlanc’s formula, both from their estimates and
from the parsers produced by Bison. The TCLLK are estimated based on the
fraction of selection table occupied, the sum of lengths of the right hand sides,
and the number of elementsin the default tables. It omitsthe error recovery in-
formation. The units are not bytes. They are for crude comparison purposes
only.

Figure 1 indicates several things:

» theactua LALR(1) parsers are larger than Fischer’s and LeBlanc’'s es-
timates.

* TCLLK' s parserswithout the -d flag are comparablein size to Fischer’'s
and LeBlanc's estimates for LALR(1) parsers, neither much better or
worse.

* TCLLK's parsers without the -d flag are noticeable smaller than the ac-
tual LALR(2) parsers.

* TCLLK's parsers with the -d flag can be expected to be much smaller
than LALR(1) parsers.

26 Copyright © 1999. Thomas W. Christopher

Figurel

3.3

Size and speed of generated parsers

Parse table sizes (approximated).

Parse table sizes

6000

5000 A

4000 | O Estimated LALR(1)

W Actual LALR(1)
3000 -
O TCLLk w/out -d
2000 A 00 TCLLK with -d
1000 -
0 |

EULER Icon Pascal Java

Size

Speed of parsers

Both LALR(1) and LL(1) parsersare linear timein thelength of theinput. How
will k-symbol look-ahead affect TCLLK’ s parser’s speed?

It won't change the linear time. A full k-symbol look-ahead reads k symbols
then backs up k symbols, then reads one. Suppose k symbol look-ahead were
required for every symbol the parser reads. That would increase the time it
spends reading the program by afactor of (2k+1). Of course, theincreasein ex-
ecution time is unlikely to be anywhere near that, because

» acompiler does more than read and recognize the program, so it' sonly
afraction that will take longer,

» practical programming language grammars do not have a k-symbol
look-ahead on every symbol—indeed very few, and

* TCLLKk can remove back-ups on look-ahead if the back-ups would be
followed by reading terminal symbols.

To seewhat fraction of the tokens read might be backed up over and read again,
we implemented a Java scanner and parser and tried it out on severa Javacode
files. Table 9 shows the number of tokens read and backups.

Table 9 Backups in Java files.

Javafile backups | tokensin | backupsas %
file of tokens
com.tool sofcomputing.SharedTableOfQueues | 96 422 23%

Copyright © 1999. Thomas W. Christopher 27

TCLLk Parser Generator

Table 9 Backupsin Java files.

Javafile backups | tokensin | backupsas%
file of tokens
com.tool sof computing.FutureQueue 130 519 25%
java.util.Hashtable 366 1660 22%
java.util.Vector 250 1268 20%
java.util.StringTokenizer 97 454 21%
java.util.BitSet 256 1329 19%
javautil.Date 472 2349 20%
java.util.Calendar 346 2014 17%

For a parse using the Java grammar, about one backup occurs for each five to-

kensread. For an examination of the translated grammar, the reason appears: a

Name looks ahead beyond the Identifier. The cause appears to be

Typel npor t OnDemandDecl arati on =i nport Nane "." "*"
Nane = Si npl eNane.
Name = Qualifi edNane.

Qual i fi edNane = Nane

Si npl eNane = Identifier.

A“. *" canfollow aName, and a“.

| dentifier.

| denti fi er” can continue a Name.

TCLLk hasto look ahead to decide what to do in an import declaration.

An obvious optimization was to redefine ImportDeclarations as follows:

| nport Decl aration =

| nport Nane = ldentifier
| nport Nane = ldentifier

i npor t

| nport Nane = ldentifier

After making these changes, the backups are as shownin Table 10. With alittle

Table 10 Backups in Java files with nonterminal |mportName.

| mpor t Nane
| mpor t Nane.

" n

Javafile backups | tokensin | backupsas %
file of tokens

com.tool sofcomputing.SharedTableOfQueues | 0 422 0%

com.tool sof computing.FutureQueue 2 519 <1%

28 Copyright © 1999. Thomas W. Christopher

Size and speed of generated parsers

Table 10 Backups in Java files with nonterminal ImportName.

Javafile backups | tokensin | backupsas%
file of tokens
java.util.Hashtable 11 1660 1%
java.util.Vector 11 1268 1%
java.util.StringTokenizer 5 454 1%
java.util.BitSet 6 1329 <1%
javautil.Date 74 2349 3%
java.util.Calendar 33 2014 2%
care the fraction of backups was made utterly trivial.
3.4 A grammar for exponential LALR parser size

Fischer and LeBlanc present the following grammar that can produce an expo-
nential number of states (O(2")) in an LALR(1) parser with O(n?) productions:

start = S

S = X z;. for l<isn

X =Y,)Q | 'y forlsijsnandiz
For example, for n=3, we have this grammar:

S = X1 z1.

S = X2 z2

S = X3 z3.

X1l = y2 X1.

X1l = y2.

X1l = y3 X1.

X1l = y3.

X2 =yl X2.

X2 = yl.

X2 = y3 X2.

X2 = y3.

X3 =yl X3.

X3 = yl.

X3 = y2 X3.

X3 = y2.

start = S

We shoved the grammar through TCL Lk to seewhat would happen. For then=3
grammar, we got:

S =y2 "S:104".
S =yl "S 105".
S =y3 "S:106".

Copyright © 1999. Thomas W. Christopher 29

TCLLk Parser Generator

Figure2 Szesof TCLLK stranslations of Huge LR grammar.

Huge LR grammar

—e—init nonterm
—=— init prod
init RHS
final nonterm

number

—— final prod
—eo— final RHS

n
"S:104" = z1.
"S:104" = z3.
"S:104" = y3 "X1:101" z1.
"S:104" = yl1 "X3:103" z3.
"S:104" = y2 "S:104".
"S:105" = z3.
"S:105" = z2.
"S:105" = y3 "X2:102" z2.
"S:105" = y2 "X3:103" z3.
"S:105" =yl "S:105".
"S:106" = z1.
"S:106" = y2 "X1:101" z1.
"S:106" = z2.
"S:106" = yl1 "X2:102" z2.
"S:106" = y3 "S:106".
X1 = y2 "X1:101".
X1 = y3 "X1:101".
"X1:101" = X1.
"X1:101" =.
X2 =yl "X2:102".
X2 = y3 "X2:102".
"X2:102" = X2.
"X2:102" =
X3 = y2 "X3:103".

30 Copyright © 1999. Thomas W. Christopher

3.5

3.6

Size and speed of generated parsers

X3 =yl "X3:103".
"X3:103" X3.

"X3:103"
start = S

Figure 2 shows the growth of the resulting grammar sizes produced by TCLLk
when given aseries of these grammars.It is consistent with the hypothesis that
TCLLK’ s agorithm also resultsin an exponential growth in grammar size, and
hence in table size, in the worst case.

Possible improvements in TCLLk

Using Burke-Fisher* error recovery, parser operations (nonterminals replaced
with right hand sides, terminal symbols recognized, and action symbols
popped) are queued. When an error is detected, the queue allows the parser to
back up to an earlier state while trying alternative repairs. Thistype of error re-
covery is not appropriate for interactive systems where actions must be per-
formed immediately to respond to the user.

This queue allows the use of the default table without loss of error recovery ca-
pability. Thisresultsin a significant reduction in parse table sizes over LA-
LR(2). It would also provide much better error recovery than either Y acc or
TCLLk does currently.

Since TCL Lk already usesasimpler version of the queue, it can do just aswell
with the -d flag as without it. Why do we need to specify the flag to get the
smaller parsers? It isvestigial from TCLL1, the LL (1) parser generator and
parser TCLLK was derived from, which did not use the queue. The -d flag will
be eliminated in afuture release.

Overall

With limited use of the default table, TCLLk appears comparableto LALR(1)
with respect to parse table size. With extensive use of it, TCLLk can be signif-
icantly better. The use of Burke-Fisher error recovery can alow the parser to use
the smaller size tables with an improved error recovery.

TCLLk isbetter with respect to parser size. It isprobably not significantly worse
with respect to parser speed.

4Burke, Michael, and Fisher, Gerald, “A practical method for syntactic error diagnosis and
repair,” SIGPLAN Notices 17(6). Also “A practical method for LR and LL syntactic error
diagnosis and recovery,” ACM TOPLAS 9(2) (1987), 164-197.

Copyright © 1999. Thomas W. Christopher 31

TCLLk Parser Generator

Chapter 4 Parser’s error recovery

4.1

Error recovery isusually alot better in LL thanin LR parsers. LL parsers have
astack of the symbolsthey are expecting to match. LR parsers have their infor-
mation hidden in the parse tables and a stack of the numbers of the states they
werein. For a concrete comparison, we will examine TCLLk and Y acc.

TCLLK’s error repair
TCLLk generates parsers with panic mode error repair.

The parser discoversan error in itsinput when the next input symbol either does
not match the terminal symbol ontop of the prediction stack or it does not select
aright hand side for the nonterminal on top of the stack. There are no rulesto
tell the parser what to do next.

The parser gives an error message:

unexpected token XXXX at lineYYYY, column ZZZZ
The parser then attempts to resume parsing. There are two problems:
* The parser must get past the token that caused the syntactic error.

* The semantics routines must not become so confused that they either crash
or flood the user with error messages. This requires that the semantics stack
be set to an appropriate depth and that the contents of the stack not cause
errorsin the action routines. (Of course, the semantics could just be turned
off.)

The ssimple error repair technique that TCLLk usesis panic mode. When the
parser has detected and reported an error, it goes into panic mode and throws
away part of theinput until it hasfound atoken in the input and asymbol in the
prediction stack that allow parsing to continue. Using the prediction stack, it
generates replacement text for the input that was thrown away. Then it returns
to normal mode and continues parsing.

This leads to two questions:
* How doesit choose an input symbol to restart at?
* How doesit generate replacement text for the input it has thrown away?

The answersto the two questions are related.

32 Copyright © 1999. Thomas W. Christopher

Parser’s error recovery

The parser will read ahead to one of aset of symbolsthat delimit major sections
of the program. These symbols are called fiducial symbols, symbols the parser
can trust. For many programming languages, the fiducial symbolsinclude";",
"then", "else", and "end", symbolsthat end or separate statements. If an error is
detected within astatement, the parser will throw away therest of the statement
and try to resume parsing with the next.

The parser will not, however, accept just any fiducial. Thefiducial must be pre-
dicted. The parser will throw away input symbols up to afiducia and then ook
down the prediction stack. If it finds the fiducial symbol on the stack, or if it
finds a nonterminal symbol that derives that fiducial symbol first in astring,
then the parser will remove the symbols on the prediction stack down to the fi-
ducial or nonterminal and will then resume parsing.

If thefiducial isnot predicted, of course, the parser throwsit away and continues
looking. EQI (end of input) isafiducial, and it is at the bottom of the stack, so
the parser can at least resynchronize by throwing away all the rest of the pro-
gram.

EQI isthe only fiducial chosen by the parser generator. Users must specify the
others with the fiducial s declaration:

fiducial: f1f, ... f,,.

If the parser just throws away part of the prediction stack, the semantics stack
will be mangled when the parsing resumes and the semantics routines will
crash. Some parsers just turn off semantics on thefirst error. Thisis not agood
solution for interactive systems.

The TCLLk parser triesto repair errors. After throwing away part of the input,
it does not just throw away the top part of the prediction stack, but instead gen-
erates areplacement string of tokens for the input it has thrown away. Recall
that an LL parser works by generating a program atop theinput program, match-
ing them. Itistrivia to generate the replacement tokens. Instead of throwing
away symbols from the prediction stack, it does the following with each top
symbol of the prediction stack down to the symbol that predicted the fiducial:

» If thetop symbol isaterminal, the parser generates an error token and push-
esit onto the semantics stack. An error token can be recognized by the ac-
tion routines. It warns the action routines that the token did not come from
the user. The routines should not try to use the token nor give any further
error messages.

» If thetop symbol isan action symbol, the parser callsits action routine. The
action routine will adjust the semantics stack properly. Most action routines
will start by removing the correct number of valuesfrom the semantics stack
and checking if there were any error tokens among them. If the action rou-
tine finds an error token, it will typically push the correct number of error
tokens back on the stack (zero or one) and return immediately.

* If thetop symbol isanonterminal, the parser replacesit with one of itsright

Copyright © 1999. Thomas W. Christopher 33

TCLLk Parser Generator

4.2

hand sides. The parser chooses the right hand side that will generate a short-
est possiblestring of terminals. If there are several such right hand sides, the
parser generator chooses arbitrarily which one will be used.

To summarize, TCLLK provides panic mode error repair with very little inter-
vention from the user. The user only needs to specify some fiducial symbols.

Yacc'’s error recovery
What about LALR(1) parser generators? Here'swhat Y ACC does.

When yyparse, the parser generated by yacc, detectsan error intheinput, it calls
the subroutine yyerror () (which the user provides) and then attemptsto recover
from the error.

Routine yyerror can be assmpleas:

yyerror (nsg) char *nsg;
{printf(stderr,"%\n", nsg);}

The parser attempts to recover by the following method: It removes the top
states from the state stack until it finds a state from which a shift of the token
"error” islegal. It then pretendsto find the "error” token and enters error mode.

It will remain in error mode until it has successfully recognized three consecu-
tive tokens. While in error mode, if it detects another error, it will throw away
the current token without generating an error message.

Panic mode error recovery can use such constructs as

statenent:

| error ';

If the parser iswithin a statement when it discoversan error, it will come back
to this state, pretend to read an error token, and ook for a semicolon next. Since
itisinerror mode, it will keep reading tokens from theinput and throwing them
away until it finds a semicolon.

34 Copyright © 1999. Thomas W. Christopher

Parser’s error recovery

The user should never use "error" as alegitimate token in the program: it might
confuse the error recovery algorithm. For a more elaborate error recovery, Fig-

ure 3 on page 35 shows some commands that can be put into yyerror.

Figure3

Yacc commandsto aid in error recovery.

yyerrok; tells the parser to resume normal parsing mode (even
before recognizing three successive tokens).

yyclearin; tellsthe parser to clear its look-ahead token which it had
read from the scanner. If you are reading ahead yourself
(calling yylex), you must tell the parser to forget the last
token it read and read a new one.

YYERROR causes the parser to behave asiif it detected an error.

causes the parser to pretend it has accepted the entire

YYACCEFT, input: yyparse returns 0.

4.3

4.4

To summarize, Yacc requiresits user to modify the grammar and perhaps pro-
gram some of the error recovery semantic actions using commands to control
the parser itself. Y acc doesn’t repair errors, but only recovers from them.

Possible improvements in TCLLk

Burke-Fisher® error recovery for non-interactive systemswould improve
TCLLk far beyond the state of the LALR(2) art. It also allows much smaller
parsersthan LALR().

Conclusion

For error recovery, TCLLK currently has the advantage over Y acc, being both
easier to use and doing more. It also allows further improvements such as
Burke-Fisher error recovery.

5Burke, Michae!, and Fisher, Gerald, Op. cit.
Copyright © 1999. Thomas W. Christopher 35

TCLLk Parser Generator

Chapter 5 Finding bugs in grammars

5.1

5.2

Currently

Fischer and LeBlanc asserted that the LL(1) parsing algorithm issimpler than
LALR(1)’s. Since this makesit easier to understand what is going on, LL(1)
makesit easier to debug grammars, i.e. make them acceptabl e to the parser gen-
erator. Thismay be true for LL(1), but it is not true for TCLLK.

TCLLK s error diagnosis stinks.

TCLLk will report if any symbols cannot be derived from the start symbol. It
will report if any nonterminals do not appear to generate finite strings of termi-
nal symbols. It will report if the same nonterminal is both left and right recur-
sive, making the grammar ambiguous. It will report if two or more right hand
sides derive the empty string, another source of ambiguity.

Unfortunately, most of the errors reported are that

» factoring required more iterations than were permitted. Default isthree
iterations for the same nonterminal. It can be set to n by the command-
lineflag -fn.

» morethan k symbol 1ook-ahead was required. Default is 2. It can be set
to n by the command-line flag -kn.

TCLLk isableto spew out volumes of information about intermediate gram-
mars, but by the timethe errors are reported, the grammar has been so rewritten
that it is difficult to figure out what went wrong.

The best advice isto start with a subgrammar and add a few productions at a
time. Errors then involve the new productions that were added. The TCLLk
parser generator is so fast that there is no reason not to pass the grammar
through it repeatedly.

The state of the art in reporting grammar errorsin LALR(1) parser generators
isn't that great, but it is better than TCLLK.

Possible improvements

TCL LK’ sdiagnostics have not been the subject of much research yet, which can
explain why they are poor. How might they be improved?

36 Copyright © 1999. Thomas W. Christopher

Finding bugs in grammars

TCLLKk can keep a data base on each transformation it performs, keeping track
of why each nonterminal and production was created.

Just spewing out the history of the grammar productions that cause problems
might swamp the user in too much information, but an interactive system could
let the user browse and explore. Common patterns of grammar problems could
be built in, allowing the system to make suggestions in many cases.

If nothing else, the experience of building and using an interactive parser devel-
opment system would be instructive.

Copyright © 1999. Thomas W. Christopher 37

TCLLk Parser Generator

Chapter 6 Conclusions

We have compared TCLLk and LALR(1) parser generators with respect to four
criteria:

1. Generality. How much work isrequired to get the grammar into aform
the parser generator will accept?

2. Parser size and speed. What is the quality of parsers produced? How
large are the parsersthat it generates? How fast will they run?

3. Parser error recovery. How good is the parser’s error recovery?

4. Diagnosisof grammar problems. How much aid does the parser gen-
erator give in debugging grammars?

To repeat what we concluded:

Generality. Neither TCLLk nor LALR(1) isacompletewinner in generality of
programming language grammars accepted, since each can handle grammars
the other can not. However, several things suggest TCLLK’ s superiority:

e TCLLK'scan handle grammarsthat cannot be handled by variousLR a-
gorithms.

e TCLLK can use greater than one symbol |ook-ahead,
* Converting the Java grammar from LALR(1) to TCLLK was painless.

TCLLk lookslikeit will require less effort to use than LALR(1) parser genera-
tors. This conjecture is unprovable mathematically and is not agood candidate
for a controlled experiment, but it may be possible to reach a consensus on it.

Par ser sizeand speed. TCL Lk can be expected to produce much smaller parser
tablesthan LALR(1). In speed, both are linear time parsers. TCLLK’ s |ook-
ahead shouldn’t intrude much.

Parser error recovery. TCLLK' sparser error recovery issuperior to LALR(2).
Adding Burke-Fisher error recovery can make it spectacularly better then LA-
LR(1).

Diagnosisof grammar problems. TCLLKk currently has very poor diagnostics.

This area hasn’t been researched yet, so there isthe possibility for dramatic im-
provements.

38 Copyright © 1999. Thomas W. Christopher

Conclusions

Overall. TCLLK’ s parser generation algorithm is already competitive with LA-
LR(1) andislikely to become much better. We speculate that TCLLk will even-
tually replace LALR(1) in actual use.

Copyright © 1999. Thomas W. Christopher 39

TCLLk Parser Generator

40 Copyright © 1999. Thomas W. Christopher

